We finished the first topic of the course with a survey of results about the theory of .
In particular, we stated the Slaman-Woodin theorems on coding countable relations inside and on the structure of
.
The coding theorem and the arithmetic definability of give a new proof of Simpson's theorem on the complexity of
: Not only it is undecidable, but it is recursively isomorphic to the theory of second-order arithmetic. That
is definable in first-order arithmetic will be shown as part of the second topic.
The results on imply that there are only countably many automorphisms of
, that they are all arithmetically definable, and coincide with the identity above
. This was then used by Slaman and Shore to prove that the relation
iff
is definable in
.
We then stated Martin’s theorem on Turing Borel determinacy that any degree invariant property which is Borel as a subset of and
-cofinal holds on a cone.