117b – Undecidability and Incompleteness – Lecture 4

We showed that is Diophantine. This implies that the prime numbers are Diophantine. Therefore, there is a polynomial in several variables with integer coefficients whose range, when intersected with the natural numbers, coincides with the set of primes. Amusingly, no nonconstant polynomial with integer coefficients can only take prime values.

We proved the bounded quantifier lemma, the last technical component of the proof of the undecidability of Hilbert’s tenth problem. It implies that the class of relations definable by a formula in the structure coincides with the class of relations (i.e., the Diophantine ones).

To complete the proof of the undecidability of the tenth problem, we will show that any c.e. relation is Diophantine. For this, recall that a set is c.e. iff it is the domain of a Turing machine. We proceeded to code the behavior of Turing machines by means of a Diophantic representation. This involves coding configurations of Turing machines and it remains to show how to code the way one configuration changes into another one.

This entry was posted on Thursday, February 1st, 2007 at 2:51 pm and is filed under 117b: Computability theory. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

4 Responses to 117b – Undecidability and Incompleteness – Lecture 4

I was a bit confused about this in class, but it’s probably just because I was majorly sleep-deprived: “Therefore, there is a polynomial in several variables with integer coefficients whose range on the natural numbers coincides with the prime numbers. Amusingly, no nonconstant polynomial with integer coefficients can only take prime values.”

The distinction, then, is that there IS a polynomial whose range is all the primes AND a bunch of negatives, but there is NO polynomial whose range is primes only? Is that correct?

Yes, exactly. I think I may have actually written something incorrect on the board, so I will briefly review it on Tuesday. We have that the primes are Diophantine. From this, we saw how to build a polynomial P such that, if R is its range, then the intersection of R with the naturals is the set of primes. But any such R necessarily takes negative values (and 0?) as well. I rephrased the entry a little to make this clear.

If anyone’s interested, I remembered reading about this polynomial (though I didn’t know the historical context in which it was derived) a while back in the book The Music of the Primes. According to Amazon’s search-inside-this-book function, it’s on page 200, which I have downloaded from Amazon and is now stored on my web page. It’s good to see these things actually written out!

Thanks!
The same polynomial is shown in page 331 of the handout “Hilbert’s tenth problem. Diophantine equations: positive aspects of a negative solutions”, it is due to J. P. Jones. The polynomial we obtain if we simply apply the definitions shown in lecture is different than this one.
It is curious that this polynomial is written as the product of two polynomials, and yet its (positive) values are precisely the prime numbers.

A classical reference is Hypothèse du Continu by Waclaw Sierpiński (1934), available through the Virtual Library of Science as part of the series Mathematical Monographs of the Institute of Mathematics of the Polish Academy of Sciences. Sierpiński discusses equivalences and consequences. The statements covered include examples from set theory, combinatorics, […]

There is a new journal of the European Mathematical Society that seems perfect for these articles: EMS Surveys in Mathematical Sciences. The description at the link reads: The EMS Surveys in Mathematical Sciences is dedicated to publishing authoritative surveys and high-level expositions in all areas of mathematical sciences. It is a peer-reviewed periodical […]

The answer is no, the statement that for every set $X$ we have $$X\not\to(\omega)^\omega_2$$ does not imply the axiom of choice. This was shown by Kleinberg and Seiferas in 1973, see MR0340025 (49 #4782) Kleinberg, E. M.; Seiferas, J. I. Infinite exponent partition relations and well-ordered choice. J. Symbolic Logic 38 (1973), 299–308. https://doi.org/10.23 […]

For positive integers $a_1,\dots,a_n$, recall that the multicolor Ramsey number $R(a_1,\dots,a_n)$ is the smallest integer $N$ such that if the edges of the complete graph $K_N$ are colored with the $n$ colors $1,\dots,n$, then there is some $i\le n$ and a set of $a_i$ vertices, all of whose edges received color $i$. A maximal Ramsey$(a_1,\dots,a_n)$-colorin […]

Georgii: Let me start with some brief remarks. In a series of three papers: a. Wacław Sierpiński, "Contribution à la théorie des séries divergentes", Comp. Rend. Soc. Sci. Varsovie 3 (1910) 89–93 (in Polish). b. Wacław Sierpiński, "Remarque sur la théorème de Riemann relatif aux séries semi-convergentes", Prac. Mat. Fiz. XXI (1910) 17–20 […]

Yes, this is a nice idea, and the approach is used in practice. I list four examples below, but there are many others. Any arithmetic statement, or any first order statement about $(\mathbb R,\mathbb N,+,\times,

Not necessarily. Consider the graph $G$ in ${\mathbb R}^2$ of the points $(x,y)$ such that $$ y^5+16y-32x^3+32x=0. $$ This example comes from the nice book "The implicit function theorem" by Krantz and Parks. Note that this is the graph of a function: Fix $x$, and let $F(y)=y^5+16y-32x^3+32x$. Then $F'(y)=5y^4+16>0$ so $F$ is strictly incre […]

Following Tomas's suggestion, I am posting this as an answer: I encountered this problem while directing a Master's thesis two years ago, and again (in a different setting) with another thesis last year. I seem to recall that I somehow got to this while reading slides of a talk by Paul Pollack. Anyway, I like to deduce the results asked in the prob […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]

This is a transcendental number, in fact one of the best known ones, it is $6+$ Champernowne's number. Kurt Mahler was first to show that the number is transcendental, a proof can be found on his "Lectures on Diophantine approximations", available through Project Euclid. The argument (as typical in this area) consists in analyzing the rate at […]

I was a bit confused about this in class, but it’s probably just because I was majorly sleep-deprived: “Therefore, there is a polynomial in several variables with integer coefficients whose range on the natural numbers coincides with the prime numbers. Amusingly, no nonconstant polynomial with integer coefficients can only take prime values.”

The distinction, then, is that there IS a polynomial whose range is all the primes AND a bunch of negatives, but there is NO polynomial whose range is primes only? Is that correct?

Yes, exactly. I think I may have actually written something incorrect on the board, so I will briefly review it on Tuesday. We have that the primes are Diophantine. From this, we saw how to build a polynomial P such that, if R is its range, then the intersection of R with the naturals is the set of primes. But any such R necessarily takes negative values (and 0?) as well. I rephrased the entry a little to make this clear.

If anyone’s interested, I remembered reading about this polynomial (though I didn’t know the historical context in which it was derived) a while back in the book The Music of the Primes. According to Amazon’s search-inside-this-book function, it’s on page 200, which I have downloaded from Amazon and is now stored on my web page. It’s good to see these things actually written out!

Thanks!

The same polynomial is shown in page 331 of the handout “Hilbert’s tenth problem. Diophantine equations: positive aspects of a negative solutions”, it is due to J. P. Jones. The polynomial we obtain if we simply apply the definitions shown in lecture is different than this one.

It is curious that this polynomial is written as the product of two polynomials, and yet its (positive) values are precisely the prime numbers.