Subtitled A requiem in four acts, this excellent Spike Lee documentary chronicles the tragedy of New Orleans after being hit by hurricane Katrina. Lee shows you what happened during the storm and afterwards, how it took some time for the federal government to respond, and how people are still finding their way back, not everybody wanting to return, and some not having the means to do so. The images of complete destruction are haunting, and on a much larger scale than what most news channels showed. Many of the survivors who went back to the city now live in not very sturdy trailers, for which they had to wait several months even though the trailers were parked and waiting. The reconstruction efforts are very slow, some people got back to their houses to find nothing but rubble or even bodies—even though the houses had supposedly been inspected and found `clean.’ It is clear that nobody was prepared for a disaster of this magnitude, but it is incredible that so little was done to avoid the appalling aftermath.

You see a few courageous heroes who stayed to help or even went to the city and helped save lives when the streets were flooded and people were drowning. You also get to see police officers blocking bridges so people cannot get out. Insurance companies trying to avoid payments. People still suffering and waiting for help. At the end, you see those who have returned and how they are working to save the spirit of the city.

Moving and sad, this is a great example of what documentaries should be like.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, February 5th, 2007 at 11:00 am and is filed under Documentaries. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

The only reference I know for precisely these matters is the handbook chapter MR2768702. Koellner, Peter; Woodin, W. Hugh. Large cardinals from determinacy. In Handbook of set theory. Vols. 1, 2, 3, 1951–2119, Springer, Dordrecht, 2010. (Particularly, section 7.) For closely related topics, see also the work of Yong Cheng (and of Cheng and Schindler) on Harr […]

As other answers point out, yes, one needs choice. The popular/natural examples of models of ZF+DC where all sets of reals are measurable are models of determinacy, and Solovay's model. They are related in deep ways, actually, through large cardinals. (Under enough large cardinals, $L({\mathbb R})$ of $V$ is a model of determinacy and (something stronge […]

Throughout the question, we only consider primes of the form $3k+1$. A reference for cubic reciprocity is Ireland & Rosen's A Classical Introduction to Modern Number Theory. How can I count the relative density of those $p$ (of the form $3k+1$) such that the equation $2=3x^3$ has no solutions modulo $p$? Really, even pointers on how to say anything […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

Very briefly: Yes, there are several programs being developed that can be understood as pursuing new axioms for set theory. For the question itself of whether pursuing new axioms is a reasonably line of inquiry, see the following (in particular, the paper by John Steel): MR1814122 (2002a:03007). Feferman, Solomon; Friedman, Harvey M.; Maddy, Penelope; Steel, […]

This is a very interesting question and the subject of current research in set theory. There are, however, some caveats. Say that a set of reals is $\aleph_1$-dense if and only if it meets each interval in exactly $\aleph_1$-many points. It is easy to see that such sets exist, have size $\aleph_1$, and in fact, if $A$ is $\aleph_1$-dense, then between any tw […]

Say that the triangle is $ABC$. The vector giving the median from $A$ to $BC$ is $(AC+AB)/2$. Similarly, the one from $B$ to $AC$ is $(BA+BC)/2$, and the one from $C$ to $BA$ is $(CB+CA)/2$. Adding these, we get zero since $CB=-BC$, etc.

The usual definition of a series of nonnegative terms is as the supremum of the sums over finite subsets of the index set, $$\sum_{i\in I} x_i=\sup\biggl\{\sum_{j\in J}x_j:J\subseteq I\mbox{ is finite}\biggr\}.$$ (Note this definition does not quite work in general for series of positive and negative terms.) The point then is that is $a< x