We presented the proof that “-trichotomy” implies choice. The following is still open:
Question. () Assume that
is non-well-orderable. Is there a countably infinite family of pairwise size-incomparable sets?
We mentioned a few (familiar) statements that fail in the absence of choice, like the existence of bases for any vector space, Tychonoff’s theorem, or the “surjective” version of the Schröder-Bernstein theorem.
We defined addition, multiplication and exponentiation of cardinals, and verified that addition and multiplication are trivial. We stated the continuum hypothesis , and the generalized continuum hypothesis
.
We want to prove (in subsequent lectures) a few non-trivial results about the behavior of exponentiation. In order to do this, we need the key notion of cofinality. We proved a few basic facts about cofinality and defined regular cardinals.