This is an excellent documentary about a horrible ongoing tragedy. But there is a lot of hope in the story; John Bul Dau, one of the “lost boys of Sudan” the movie is about, is inspirational, a great leader. In the midst of all their suffering, I could not believe how much energy and optimism he displayed. He is truly an admirable person.

Part of the documentary follows several kids that are relocated to the States (thanks to Catholic Charities International). I found particularly interesting to see the culture clash that the group suffers, arriving to and having to survive in the States with what looks like very little assistance.

Although they are very grateful, we learn that the older ones have to hold one or two jobs in order to pay back the cost of their move. Of course, the jobs they find are not particularly appealing or well paid, plus they have to face discrimination and ignorance. The younger ones, on the other hand, get to go to school and several of them try very quickly to absorb the American life style, leaving behind their roots and traditions, which leads to an interesting clash with people like John Bul Dau, who makes every effort to keep their memory and connections alive.

I highly recommend this moving and sobering documentary.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Sunday, April 27th, 2008 at 6:44 pm and is filed under Documentaries. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

I feel this question may be a duplicate, because I am pretty certain I first saw the paper I mention below in an answer here. You may be interested in reading the following: MR2141502 (2006c:68092) Reviewed. Calude, Cristian S.(NZ-AUCK-C); Jürgensen, Helmut(3-WON-C). Is complexity a source of incompleteness? (English summary), Adv. in Appl. Math. 35 (2005), […]

The smallest such ordinal is $0$ because you defined your rank (height) inappropriately (only successor ordinals are possible). You want to define the rank of a node without successors as $0$, and of a node $a$ with successors as the supremum of the set $\{\alpha+1\mid\alpha$ is the rank of an immediate successor of $a\}$. With this modification, the smalles […]

The perfect reference for this is MR2562557 (2010j:03061) Reviewed. Steel, J. R.(1-CA). The derived model theorem. In Logic Colloquium 2006. Proceedings of Annual European Conference on Logic of the Association for Symbolic Logic held at the Radboud University, Nijmegen, July 27–August 2, 2006, S. B. Cooper, H. Geuvers, A. Pillay and J. Väänänen, eds., Lectu […]

Consider $A=\{(x,y)\in\mathbb R^2\mid x\notin L[y]\}$. Check that this set is $\Pi^1_2$ (this is similar to the proof that there is a $\Delta^1_2$ well-ordering in $L$). The point is that $A$ does not admit a projective uniformization. It does not really matter that the number of Cohen reals you added is $\aleph_2$; any uncountable number would work. The rea […]