Update. I present here a quick sketch of the solution of Exercise 3.(b). See Lecture 18, where it is shown that the result actually holds in , although the proof uses choice.

Let and be two well-orderings of a set . We want to find a subset of of the same size as where the two well-orderings coincide. Let . By combining with an isomorphism between and its order type, we may assume that is an ordinal and . By restricting attention to the subset of , we may assume is a well-ordering of . By further restricting to the subset of of order type under , we may assume that as well.

Assume first that is regular. The result follows easily. The desired set can be built by a straightforward recursion: Given and a sequence of elements of increasing under both well-orderings, regularity ensures that the sequence is bounded under both well-orderings, and we can find which is larger than all the previous under both orderings.

The argument for singular is slightly more delicate. Namely, we may not be able to carry out the construction above since the sequence could be unbounded in one of the orderings when . We circumvent the problem by only considering ordinals whose cofinality is larger than the cofinality of . Notice that if an increasing sequence of order type is unbounded in an ordinal of cofinality , then .

To implement this idea, let be an increasing sequence of regular cardinals cofinal in , with . Consider the subset . It must contain a subset of size where coincides with . By the remark above, this subset is bounded in . Let denote the shortest initial segment of containing . By removing from the set , we are left with a set of size , and any ordinal there is larger than the elements of under both orderings. The induction continues this way, by considering at stage a set of size .

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Tuesday, May 20th, 2008 at 12:40 am and is filed under 116c: Set theory. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

[…] amusing application of the fact that is that the result of Exercise 3 from Homework 7 holds in , although the proof I wrote there uses choice. Namely, work in and consider two […]

The only reference I know for precisely these matters is the handbook chapter MR2768702. Koellner, Peter; Woodin, W. Hugh. Large cardinals from determinacy. In Handbook of set theory. Vols. 1, 2, 3, 1951–2119, Springer, Dordrecht, 2010. (Particularly, section 7.) For closely related topics, see also the work of Yong Cheng (and of Cheng and Schindler) on Harr […]

As other answers point out, yes, one needs choice. The popular/natural examples of models of ZF+DC where all sets of reals are measurable are models of determinacy, and Solovay's model. They are related in deep ways, actually, through large cardinals. (Under enough large cardinals, $L({\mathbb R})$ of $V$ is a model of determinacy and (something stronge […]

Throughout the question, we only consider primes of the form $3k+1$. A reference for cubic reciprocity is Ireland & Rosen's A Classical Introduction to Modern Number Theory. How can I count the relative density of those $p$ (of the form $3k+1$) such that the equation $2=3x^3$ has no solutions modulo $p$? Really, even pointers on how to say anything […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

Let $s$ be the supremum of the $\mu$-measures of members of $\mathcal G$. By definition of supremum, for each $n$, there is $G_n\in\mathcal G$ with $\mu(G_n)>s-1/n$. Letting $G=\bigcup_n G_n$, then $G\in \mathcal G$ since $\mathcal G$ is closed under countable unions, and $\mu(G)=s$, since it is at least $\sup_n\mu(G_n)$ but it is at most $s$ (by definiti […]

The result you are trying to prove is false. For example, if $a=\omega+1$ and $b=\omega+\omega$, then $a+b=\omega\cdot 3>b$. Here is what is true: first, the key result you should establish (by induction) is that An ordinal $\alpha>0$ has the property that for all $\beta

Very briefly: Yes, there are several programs being developed that can be understood as pursuing new axioms for set theory. For the question itself of whether pursuing new axioms is a reasonably line of inquiry, see the following (in particular, the paper by John Steel): MR1814122 (2002a:03007). Feferman, Solomon; Friedman, Harvey M.; Maddy, Penelope; Steel, […]

This is a very interesting question and the subject of current research in set theory. There are, however, some caveats. Say that a set of reals is $\aleph_1$-dense if and only if it meets each interval in exactly $\aleph_1$-many points. It is easy to see that such sets exist, have size $\aleph_1$, and in fact, if $A$ is $\aleph_1$-dense, then between any tw […]

[…] amusing application of the fact that is that the result of Exercise 3 from Homework 7 holds in , although the proof I wrote there uses choice. Namely, work in and consider two […]