As discussed during Lecture 13, for the theories one encounters when studying set theory, no absolute consistency results are possible, and we rather look for relative consistency statements. For example, the theories “There is a weakly inaccessible cardinal” and “There is a strongly inaccessible cardinal” are equiconsistent. This means that a weak theory (much less than suffices) can prove . Namely: is a subtheory of , so its inconsistency implies the inconsistency of . Assume is inconsistent and fix a proof of an inconsistency from . Then a proof of an inconsistency from can be found by showing that each is a theorem of , and this argument can be carried out in a theory (such as ) where the syntactic manipulations of formulas that this involves are possible.

It is a remarkable empirical fact that the combinatorial statements studied by set theorists can be measured against a linear scale of consistency, calibrated by the so called large cardinal axioms, of which strongly inaccessible cardinals are perhaps the first natural example. Hypotheses as unrelated as the saturation of the nonstationary ideal or determinacy have been shown equiconsistent with extensions of by large cardinals. One direction (that models with large cardinals generate models of the hypothesis under study) typically involves the method of forcing and won’t be discussed further here. The other direction, just as in the very simple example of weak vs strong inaccessibility, typically requires showing that certain transitive classes (like ) must have large cardinals of the desired sort. We will illustrate these ideas by obtaining large cardinals from determinacy in the last lecture of the course.

We defined the axiom of determinacy . It contradicts choice but it relativizes to the model . This is actually the natural model to study and, in fact, from large cardinals one can prove that .

We illustrated basic consequences of for the theory of the reals by showing that it implies that every set of reals has the perfect set property (and therefore a version of is true under ). Similar arguments give that implies that all sets of reals have the Baire property and are Lebesgue measurable. In the last lecture of the course we will use the perfect set property of sets of reals to show that the consistency of implies the consistency of strongly inaccessible cardinals.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Wednesday, June 4th, 2008 at 6:31 pm and is filed under 116c: Set theory. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I learned of this problem through Su Gao, who heard of it years ago while a post-doc at Caltech. David Gale introduced this game in the 70s, I believe. I am only aware of two references in print: Richard K. Guy. Unsolved problems in combinatorial games. In Games of No Chance, (R. J. Nowakowski ed.) MSRI Publications 29, Cambridge University Press, 1996, pp. […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

Please send an email to mathrev@ams.org, explaining the issue. (This is our all-purpose email address; any mistakes you discover, not just regarding references, you can let us know there.) Give us some time, I promise we'll get to it. However, if it seems as if the request somehow fell through the cracks, you can always contact one of your friendly edit […]

The problem is in the quantifiers that are implicit in the statement you are making. What you have is that for all $\epsilon>0$ and all integers $k,m$ with $k>m>0$, there is an $N$ such that if $n>N$, then $|a_n|

The relevant search term is ethnomathematics. There are several journals devoted to this topic (for instance, Revista latinoamericana de etnomatemática). Browsing them (if you have access to MathSciNet, the relevant MSC class is 01A70) and looking at their references should help you get started. Another place to look for this is in journals of history of mat […]

Some of the comments in the previous answers make a subtle mistake, and I think it may be worth clarifying some issues. I am assuming the standard sort of set theory in what follows. Cantor's diagonal theorem (mentioned in some of the answers) gives us that for any set $X$, $|X|

For $\lambda$ a scalar, let $[\lambda]$ denote the $1\times 1$ matrix whose sole entry is $\lambda$. Note that for any column vectors $a,b$, we have that $a^\top b=[a\cdot b]$ and $a[\lambda]=\lambda a$. The matrix at hand has the form $A=vw^\top$. For any $u$, we have that $$Au=(vw^\top)u=v(w^\top u)=v[w\cdot u]=(w\cdot u)v.\tag1$$ This means that there are […]

That you can list $K $ does not mean you can list its complement. Perhaps the thing to note to build your intuition is that the program is not listing the elements of $K $ in increasing order. Indeed, maybe program 20 halts on input 20 but only does it after several million steps, while program 19 doesn't halt on input 19 and program 21 halts on input 2 […]