Here is the computation I wanted to show at the end of today’s lecture: Consider a function that is continuous and invertible on an interval . Rotate about the -axis the region bounded by , , and . Then the values assigned to the volume of the resulting solid by applying either the disk method or the shell method coincide.

To see this, let’s call the expression obtained using the disk (or washer) method and the expression obtained using the shell method.

Then and .

As I mentioned in lecture, the idea to show the equality of both expressions is to, more generally, consider functions and that compute the values given by the disk and shell methods, respectively, for the volume of the solid obtained by rotating about the -axis the region bounded by , , and . Here, is a new variable that varies in . Hence, and . We will show that for all .

The trick is to proceed indirectly and, rather than looking at and , we examine their derivatives. Of course, if for all , then we must also have . Let’s check that this is indeed the case:

We have . To compute , let’s simplify a bit before differentiating: , so (Notice that does not depend on , so we can take out of the integral sign.)

Then so , or , since .

We have found that .

This does not automatically imply that , but almost: Let . Then (for all ), so is constant.

Finally, notice that . Since is constant, it follows that for all . And we are done.

Remark 1. We will see a different argument later in the course, once we study integration by parts.

Remark 2. One can also check that the disk and shell methods provide the same result when we rotate about the -axis the region bounded by , and . To check your understanding of the argument above, it may be useful to try to work this case out on your own; the algebra is somewhat simpler than the computations I just detailed.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, August 28th, 2008 at 3:50 am and is filed under 175: Calculus II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

It is easy to see without choice that if there is a surjection from $A$ onto $B$, then there is an injection from ${\mathcal P}(B)$ into ${\mathcal P}(A)$, and the result follows from Cantor's theorem that $B

Only noticed this question today. Although the selected answer is quite nice and arguably simpler than the argument below, none of the posted answers address what appeared to be the original intent of establishing the inequality using the Arithmetic Mean-Geometric Mean Inequality. For this, simply notice that $$ 1+3+\ldots+(2n-1)=n^2, $$ which can be easily […]

First of all, $f(z)+e^z\ne 0$ by the first inequality. It follows that $e^z/(f(z)+e^z)$ is entire, and bounded above. You should be able to conclude from that.

Yes. The standard way of defining these sequences goes by assigning in an explicit fashion to each limit ordinal $\alpha$, for as long as possible, an increasing sequence $\alpha_n$ that converges to $\alpha$. Once this is done, we can define $f_\alpha$ by diagonalizing, so $f_\alpha(n)=f_{\alpha_n}(n)$ for all $n$. Of course there are many possible choices […]

I disagree with the advice of sending a paper to a journal before searching the relevant literature. It is almost guaranteed that a paper on the fundamental theorem of algebra (a very classical and well-studied topic) will be rejected if you do not include mention on previous proofs, and comparisons, explaining how your proof differs from them, etc. It is no […]