Here is the Maple worksheet I tried to follow on Friday. I am including also three topographical maps to illustrate the fact that rivers follow paths of steepest descent. Unfortunately, the resolution is not ideal in any of the examples. If you know of a good free online source for decent topo maps, please let me know.

The first map (greatlakesarea) was obtained through the my-topo.com site.

The other two maps (colombia1, colombia2) were obatined through the site for the Instituto Geografico Agustin Codazzi.

Here is the Maple worksheet: directionalderivatives. Unfortunately, wordpress only allows one to upload files from a very small number of applications, so I have changed the extension from .mw to .doc, and you may want to change it back after downloading. I am somewhat rusty in my knowledge of Maple, so I don’t remember how to change the lighting in graphics directly through the code (if you know how, please let me know). To see the surfaces better, you may want to click on them so the “Plot” menu activates, and there you want to choose something like Light Scheme 1 under Lighting. You may also rotate the graphs, to see them from different angles, which helps appreciate better some of the details (like the ring of directions in the tangent plane in one of the examples).

[There is a typo, of course. At the end, where it says , it should be .]

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Sunday, October 12th, 2008 at 9:38 pm and is filed under 275: Calculus III. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I learned of this problem through Su Gao, who heard of it years ago while a post-doc at Caltech. David Gale introduced this game in the 70s, I believe. I am only aware of two references in print: Richard K. Guy. Unsolved problems in combinatorial games. In Games of No Chance, (R. J. Nowakowski ed.) MSRI Publications 29, Cambridge University Press, 1996, pp. […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

Please send an email to mathrev@ams.org, explaining the issue. (This is our all-purpose email address; any mistakes you discover, not just regarding references, you can let us know there.) Give us some time, I promise we'll get to it. However, if it seems as if the request somehow fell through the cracks, you can always contact one of your friendly edit […]

The relevant search term is ethnomathematics. There are several journals devoted to this topic (for instance, Revista latinoamericana de etnomatemática). Browsing them (if you have access to MathSciNet, the relevant MSC class is 01A70) and looking at their references should help you get started. Another place to look for this is in journals of history of mat […]

Some of the comments in the previous answers make a subtle mistake, and I think it may be worth clarifying some issues. I am assuming the standard sort of set theory in what follows. Cantor's diagonal theorem (mentioned in some of the answers) gives us that for any set $X$, $|X|

For $\lambda$ a scalar, let $[\lambda]$ denote the $1\times 1$ matrix whose sole entry is $\lambda$. Note that for any column vectors $a,b$, we have that $a^\top b=[a\cdot b]$ and $a[\lambda]=\lambda a$. The matrix at hand has the form $A=vw^\top$. For any $u$, we have that $$Au=(vw^\top)u=v(w^\top u)=v[w\cdot u]=(w\cdot u)v.\tag1$$ This means that there are […]

That you can list $K $ does not mean you can list its complement. Perhaps the thing to note to build your intuition is that the program is not listing the elements of $K $ in increasing order. Indeed, maybe program 20 halts on input 20 but only does it after several million steps, while program 19 doesn't halt on input 19 and program 21 halts on input 2 […]

A reasonable follow-up question is whether there are some natural algebraic properties that the class of cardinals satisfies (provably in $\mathsf{ZF}$ or in $\mathsf{ZF}$ together with a weak axiom of choice). This is a natural problem and was investigated by Tarski in the 1940s, see MR0029954 (10,686f). Tarski, Alfred. Cardinal Algebras. With an Appendix: […]