I just learned from the textbook that apparently whether the series

converges is still open, which I find rather surprising. The reference the book lists is the book Mazes for the Mind by Clifford Pickover, St. Martin Press, NY, from 1992, but Dr. Pickover has informed me that he believes the problem is still unresolved; he also discusses it in his book The Mathematics of Oz, Cambridge University Press, 2002. I would be very curious to hear from updates or suggestions, if you have any.

Here is a slightly technical (and very quick, and not particularly deep) observation: The issue seems to be to quantify how small is, when it is small, or more precisely, how sparse the set of values of is for which the sine function is “significantly small.” One could start by looking at so that is small for some , so we are led to consider the standard convergent approximations to , satisfying . This means that is close to, but slightly larger than, and so the question leads us to the problem of how sparse the sequence of numerators of the rational approximations to actually is, something about which I don’t know of any results.

Below I display some graphs for the partial sums of the series. Let . The first graph shows vs. for . In the other graphs, goes up to 300, 1000, and 100000. (Thanks to Richard Ketchersid for the code.) It is not clear to me that the last graph is accurate or that it allows us to draw any conclusions (it certainly seems to suggest that the series converges to a number slightly larger than 30); it may well be that further jumps are beyond the range I chose, or that the approximations Maple uses in its computations are not fine enough to examine very large values of the series.

Notice that examination of just the first few values of would suggest that the series converges to a number near 4.8. In fact, for many “natural” series, the 300-th partial sum gives an accurate approximation of their value. However, as the third graph reveals, a jump suddenly occurs, slightly after we pass the 350-th partial sum. The jump occurs at notice that 355 is very close to an integer multiple of , in fact

Even though the fourth graph does not reveal any further jumps, it is not clear that they won’t occur at certain values of past the 10000 mark.

This entry was posted on Monday, November 10th, 2008 at 3:55 pm and is filed under 175: Calculus II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

A database of number fields, by Jürgen Klüners and Gunter Malle. (Note this is not the same as the one mentioned in this answer.) The site also provides links to similar databases.

As the other answer indicates, the yes answer to your question is known as the De Bruijn-Erdős theorem. This holds regardless of the size of the graph. The De Bruijn–Erdős theorem is a particular instance of what in combinatorics we call a compactness argument or Rado's selection principle, and its truth can be seen as a consequence of the topological c […]

Every $P_c$ has the size of the reals. For instance, suppose $\sum_n a_n=c$ and start by writing $\mathbb N=A\cup B$ where $\sum_{n\in A}a_n$ converges absolutely (to $a$, say). This is possible because $a_n\to 0$: Let $m_0

Consider a subset $\Omega$ of $\mathbb R$ of size $\aleph_1$ and ordered in type $\omega_1$. (This uses the axiom of choice.) Let $\mathcal F$ be the $\sigma$-algebra generated by the initial segments of $\Omega$ under the well-ordering (so all sets in $\mathcal F$ are countable or co-countable), with the measure that assigns $0$ to the countable sets and $1 […]

You assume $\omega_\alpha\subseteq M$ and $X\in M$ so that $X$ belongs to the transitive collapse of $M$ (because if $\pi$ is the collapsing map, $\pi(X)=\pi[X]=X$. You assume $|M|=\aleph_\alpha$ so that the transitive collapse of $M$ has size $\aleph_\alpha$. Since you also have that this transitive collapse is of the form $L_\beta$ for some $\beta$, it fol […]

No, this is not possible. Dave L. Renfro wrote an excellent historical Essay on nowhere analytic $C^\infty$ functions in two parts (with numerous references). See here: 1 (dated May 9, 2002 6:18 PM), and 2 (dated May 19, 2002 8:29 PM). As indicated in part 1, in Zygmunt Zahorski. Sur l'ensemble des points singuliers d'une fonction d'une variab […]

I don't think you need too much in terms of prerequisites. An excellent reference is MR3616119. Tomkowicz, Grzegorz(PL-CEG2); Wagon, Stan(1-MACA-NDM). The Banach-Tarski paradox. Second edition. With a foreword by Jan Mycielski. Encyclopedia of Mathematics and its Applications, 163. Cambridge University Press, New York, 2016. xviii+348 pp. ISBN: 978-1-10 […]

For the second problem, write $x=-3+x'$ and so on. You have $x'+y'+z'=17$ and $x',\dots$ are nonnegative, a case you know how to solve. You can also solve the first problem this way; now you would set $x=1+x'$, etc.