As briefly mentioned in the book, for polynomial equations of degree five or higher we cannot find solutions the same way that we found solutions to the equations of degree at most four.

Implicit in this statement is the notion of `solution’ that we are interested in. From the point of view of Abstract Algebra, the expressions we are looking for are what one usually calls solutions `by radicals,’ although we have not made this too precise yet. Informally, we look for a formula in which we are allowed to use:

The coefficients of the given polynomial, and

complex and real numbers,

and in which we can make use of

the elementary operations , and

radicals—i.e., we can take -th roots of any of the expressions we can obtain, for any positive integer

The amazing result that motivates our work through this course is that, indeed, no such formulas exist for polynomials of degree five or higher.

However, it is a bit misleading to read this as saying that no `formulas’ exist at all. The situation is similar to what mathematicians had to face before having the notion of complex numbers. Then, some equations could not be solved, since their solutions would involve the extraction of square roots of negative numbers. Nowadays, we understand that we can solve those equations, as long as the use of complex numbers is allowed, and we cannot otherwise.

Indeed, although no solutions by radicals are possible for the roots of quintic polynomials, if we allow a larger class of operations to be used, then solutions exist. For example, more general hypergeometric series than -th roots allow us to find the roots of the quintic. Although not nearly as popular now as they once were, hypergeometric series (a particular kind of power series) are still fairly used, for example in partition theory.

There is a well known poster from Wolfram Research explaining how Mathematica can be used to solve the quintic with the help of these functions; their webpage actually is very interesting.

Besides the usefulness of hypergeometric functions, Felix Klein found an approach using the symmetries of the Icosahedron. His book, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, is available online for download from Cornell.

These approaches essentially propagate to higher degree equations, with some new obstacles appearing along the way, but in this sense, one can solve

any polynomial equation. The solutions are less satisfactory in that general hypergeometric functions are less well understood and much less intuitive than -th roots. For the purposes of the course, we will concentrate on solutions by radicals, since also these are the ones that lend themselves naturally to algebraic (rather than analytic) study, and the arguments work in much more generality than just over the complex numbers.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, February 5th, 2009 at 4:13 pm and is filed under 305: Abstract Algebra I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

The study of finite choice axioms is quite interesting. Besides the reference given in Asaf's answer, there are a few papers covering this topic in detail. If you can track it down, I suggest you read MR0360275 (50 #12725) Reviewed. Conway, J. H. Effective implications between the "finite'' choice axioms. In Cambridge Summer School in Mat […]

I feel this question may be a duplicate, because I am pretty certain I first saw the paper I mention below in an answer here. You may be interested in reading the following: MR2141502 (2006c:68092) Reviewed. Calude, Cristian S.(NZ-AUCK-C); Jürgensen, Helmut(3-WON-C). Is complexity a source of incompleteness? (English summary), Adv. in Appl. Math. 35 (2005), […]

The smallest such ordinal is $0$ because you defined your rank (height) inappropriately (only successor ordinals are possible). You want to define the rank of a node without successors as $0$, and of a node $a$ with successors as the supremum of the set $\{\alpha+1\mid\alpha$ is the rank of an immediate successor of $a\}$. With this modification, the smalles […]

The perfect reference for this is MR2562557 (2010j:03061) Reviewed. Steel, J. R.(1-CA). The derived model theorem. In Logic Colloquium 2006. Proceedings of Annual European Conference on Logic of the Association for Symbolic Logic held at the Radboud University, Nijmegen, July 27–August 2, 2006, S. B. Cooper, H. Geuvers, A. Pillay and J. Väänänen, eds., Lectu […]