As briefly mentioned in the book, for polynomial equations of degree five or higher we cannot find solutions the same way that we found solutions to the equations of degree at most four.

Implicit in this statement is the notion of `solution’ that we are interested in. From the point of view of Abstract Algebra, the expressions we are looking for are what one usually calls solutions `by radicals,’ although we have not made this too precise yet. Informally, we look for a formula in which we are allowed to use:

The coefficients of the given polynomial, and

complex and real numbers,

and in which we can make use of

the elementary operations , and

radicals—i.e., we can take -th roots of any of the expressions we can obtain, for any positive integer

The amazing result that motivates our work through this course is that, indeed, no such formulas exist for polynomials of degree five or higher.

However, it is a bit misleading to read this as saying that no `formulas’ exist at all. The situation is similar to what mathematicians had to face before having the notion of complex numbers. Then, some equations could not be solved, since their solutions would involve the extraction of square roots of negative numbers. Nowadays, we understand that we can solve those equations, as long as the use of complex numbers is allowed, and we cannot otherwise.

Indeed, although no solutions by radicals are possible for the roots of quintic polynomials, if we allow a larger class of operations to be used, then solutions exist. For example, more general hypergeometric series than -th roots allow us to find the roots of the quintic. Although not nearly as popular now as they once were, hypergeometric series (a particular kind of power series) are still fairly used, for example in partition theory.

There is a well known poster from Wolfram Research explaining how Mathematica can be used to solve the quintic with the help of these functions; their webpage actually is very interesting.

Besides the usefulness of hypergeometric functions, Felix Klein found an approach using the symmetries of the Icosahedron. His book, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, is available online for download from Cornell.

These approaches essentially propagate to higher degree equations, with some new obstacles appearing along the way, but in this sense, one can solve

any polynomial equation. The solutions are less satisfactory in that general hypergeometric functions are less well understood and much less intuitive than -th roots. For the purposes of the course, we will concentrate on solutions by radicals, since also these are the ones that lend themselves naturally to algebraic (rather than analytic) study, and the arguments work in much more generality than just over the complex numbers.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, February 5th, 2009 at 4:13 pm and is filed under 305: Abstract Algebra I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I thought about this question a while ago, while teaching a topics course. Since one can easily check that $${}|{\mathbb R}|=|{\mathcal P}({\mathbb N})|$$ by a direct construction that does not involve diagonalization, the question can be restated as: Is there a proof of Cantor's theorem that ${}|X|

First of all, note (as Monroe does in his question) that if $\mathbb P,\mathbb Q$ are ccc, then $\mathbb P\times\mathbb Q$ is $\mathfrak c^+$-cc, as an immediate consequence of the Erdős-Rado theorem $(2^{\aleph_0})^+\to(\aleph_1)^2_2$. (This is to say, if $\mathbb P$ and $\mathbb Q$ do not admit uncountable antichains, then any antichain in their product ha […]

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $$A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\},$$ and $\mathsf{ZFC}$ proves that $\phi$ and $\psi […]

A notion now considered standard of primitive recursive set function is introduced in MR0281602 (43 #7317). Jensen, Ronald B.; Karp, Carol. Primitive recursive set functions. In 1971 Axiomatic Set Thoory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) pp. 143–176 Amer. Math. Soc., Providence, R.I. The concept is use […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]