As briefly mentioned in the book, for polynomial equations of degree five or higher we cannot find solutions the same way that we found solutions to the equations of degree at most four.

Implicit in this statement is the notion of `solution’ that we are interested in. From the point of view of Abstract Algebra, the expressions we are looking for are what one usually calls solutions `by radicals,’ although we have not made this too precise yet. Informally, we look for a formula in which we are allowed to use:

The coefficients of the given polynomial, and

complex and real numbers,

and in which we can make use of

the elementary operations , and

radicals—i.e., we can take -th roots of any of the expressions we can obtain, for any positive integer

The amazing result that motivates our work through this course is that, indeed, no such formulas exist for polynomials of degree five or higher.

However, it is a bit misleading to read this as saying that no `formulas’ exist at all. The situation is similar to what mathematicians had to face before having the notion of complex numbers. Then, some equations could not be solved, since their solutions would involve the extraction of square roots of negative numbers. Nowadays, we understand that we can solve those equations, as long as the use of complex numbers is allowed, and we cannot otherwise.

Indeed, although no solutions by radicals are possible for the roots of quintic polynomials, if we allow a larger class of operations to be used, then solutions exist. For example, more general hypergeometric series than -th roots allow us to find the roots of the quintic. Although not nearly as popular now as they once were, hypergeometric series (a particular kind of power series) are still fairly used, for example in partition theory.

There is a well known poster from Wolfram Research explaining how Mathematica can be used to solve the quintic with the help of these functions; their webpage actually is very interesting.

Besides the usefulness of hypergeometric functions, Felix Klein found an approach using the symmetries of the Icosahedron. His book, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, is available online for download from Cornell.

These approaches essentially propagate to higher degree equations, with some new obstacles appearing along the way, but in this sense, one can solve

any polynomial equation. The solutions are less satisfactory in that general hypergeometric functions are less well understood and much less intuitive than -th roots. For the purposes of the course, we will concentrate on solutions by radicals, since also these are the ones that lend themselves naturally to algebraic (rather than analytic) study, and the arguments work in much more generality than just over the complex numbers.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, February 5th, 2009 at 4:13 pm and is filed under 305: Abstract Algebra I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

I am looking for references discussing two inequalities that come up in the study of the dynamics of Newton's method on real-valued polynomials (in one variable). The inequalities are fairly different, but it seems to make sense to ask about both of them in the same post. Most of the details below are fairly elementary, they are mostly included for comp […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

First of all, $f(z)+e^z\ne 0$ by the first inequality. It follows that $e^z/(f(z)+e^z)$ is entire, and bounded above. You should be able to conclude from that.

Yes. The standard way of defining these sequences goes by assigning in an explicit fashion to each limit ordinal $\alpha$, for as long as possible, an increasing sequence $\alpha_n$ that converges to $\alpha$. Once this is done, we can define $f_\alpha$ by diagonalizing, so $f_\alpha(n)=f_{\alpha_n}(n)$ for all $n$. Of course there are many possible choices […]

I disagree with the advice of sending a paper to a journal before searching the relevant literature. It is almost guaranteed that a paper on the fundamental theorem of algebra (a very classical and well-studied topic) will be rejected if you do not include mention on previous proofs, and comparisons, explaining how your proof differs from them, etc. It is no […]

No, the rank of a set $x$ is the least $\alpha$ such that $x\in V_{\alpha+1}$. Note that if $\alpha$ is limit, any $x\in V_\alpha$ belongs to some $V_\beta$ with $\beta