As briefly mentioned in the book, for polynomial equations of degree five or higher we cannot find solutions the same way that we found solutions to the equations of degree at most four.

Implicit in this statement is the notion of `solution’ that we are interested in. From the point of view of Abstract Algebra, the expressions we are looking for are what one usually calls solutions `by radicals,’ although we have not made this too precise yet. Informally, we look for a formula in which we are allowed to use:

The coefficients of the given polynomial, and

complex and real numbers,

and in which we can make use of

the elementary operations , and

radicals—i.e., we can take -th roots of any of the expressions we can obtain, for any positive integer

The amazing result that motivates our work through this course is that, indeed, no such formulas exist for polynomials of degree five or higher.

However, it is a bit misleading to read this as saying that no `formulas’ exist at all. The situation is similar to what mathematicians had to face before having the notion of complex numbers. Then, some equations could not be solved, since their solutions would involve the extraction of square roots of negative numbers. Nowadays, we understand that we can solve those equations, as long as the use of complex numbers is allowed, and we cannot otherwise.

Indeed, although no solutions by radicals are possible for the roots of quintic polynomials, if we allow a larger class of operations to be used, then solutions exist. For example, more general hypergeometric series than -th roots allow us to find the roots of the quintic. Although not nearly as popular now as they once were, hypergeometric series (a particular kind of power series) are still fairly used, for example in partition theory.

There is a well known poster from Wolfram Research explaining how Mathematica can be used to solve the quintic with the help of these functions; their webpage actually is very interesting.

Besides the usefulness of hypergeometric functions, Felix Klein found an approach using the symmetries of the Icosahedron. His book, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, is available online for download from Cornell.

These approaches essentially propagate to higher degree equations, with some new obstacles appearing along the way, but in this sense, one can solve any polynomial equation. The solutions are less satisfactory in that general hypergeometric functions are less well understood and much less intuitive than -th roots. For the purposes of the course, we will concentrate on solutions by radicals, since also these are the ones that lend themselves naturally to algebraic (rather than analytic) study, and the arguments work in much more generality than just over the complex numbers.

This entry was posted on Thursday, February 5th, 2009 at 4:13 pm and is filed under 305: Abstract Algebra I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Georgii: Let me start with some brief remarks. In a series of three papers: a. Wacław Sierpiński, "Contribution à la théorie des séries divergentes", Comp. Rend. Soc. Sci. Varsovie 3 (1910) 89–93 (in Polish). b. Wacław Sierpiński, "Remarque sur la théorème de Riemann relatif aux séries semi-convergentes", Prac. Mat. Fiz. XXI (1910) 17–20 […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is that the existence of a nonprincipal ultrafilter does not imply the existence of a Vitali set. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${ […]

Marginalia to a theorem of Silver (see also this link) by Keith I. Devlin and R. B. Jensen, 1975. A humble title and yet, undoubtedly, one of the most important papers of all time in set theory.

Given a positive integer $a$, the Ramsey number $R(a)$ is the least $n$ such that whenever the edges of the complete graph $K_n$ are colored using only two colors, we necessarily have a copy of $K_a$ with all its edges of the same color. For example, $R(3)= 6$, which is usually stated by saying that in a party of 6 people, necessarily there are 3 that know e […]

Equality is part of the background (first-order) logic, so it is included, but there is no need to mention it. The situation is the same in many other theories. If you want to work in a language without equality, on the other hand, then this is mentioned explicitly. It is true that from extensionality (and logical axioms), one can prove that two sets are equ […]

$L$ has such a nice canonical structure that one can use it to define a global well-ordering. That is, there is a formula $\phi(u,v)$ that (provably in $\mathsf{ZF}$) well-orders all of $L$, so that its restriction to any specific set $A$ in $L$ is a set well-ordering of $A$. The well-ordering $\varphi$ you are asking about can be obtained as the restriction […]

Gödel sentences are by construction $\Pi^0_1$ statements, that is, they have the form "for all $n$ ...", where ... is a recursive statement (think "a statement that a computer can decide"). For instance, the typical Gödel sentence for a system $T$ coming from the second incompleteness theorem says that "for all $n$ that code a proof […]

When I first saw the question, I remembered there was a proof on MO using Ramsey theory, but couldn't remember how the argument went, so I came up with the following, that I first posted as a comment: A cute proof using Schur's theorem: Fix $a$ in your semigroup $S$, and color $n$ and $m$ with the same color whenever $a^n=a^m$. By Schur's theo […]

It depends on what you are doing. I assume by lower level you really mean high level, or general, or 2-digit class. In that case, 54 is general topology, 26 is real functions, 03 is mathematical logic and foundations. "Point-set topology" most likely refers to the stuff in 54, or to the theory of Baire functions, as in 26A21, or to descriptive set […]