This set is due February 20 at the beginning of lecture. Consult the syllabus for details on the homework policy. I do not think this set is particularly difficult, but it is on the longish side of things, so make sure you leave yourself enough time to work on it.
1. Gauß’ fundamental theorem of algebra states that any equation where
is a polynomial with complex coefficients, has at least one complex root
This means that
is a complex number and
Show that
has at most
roots, where
is its degree, and that if we count roots up to multiplicity, then it has exactly
roots. Since the multiplicity of a root
is by definition the largest
such that
is a factor of
you may want to verify that
iff
is a factor of
2. Let be a polynomial with real coefficients, and let
be a complex root of
Show that
as well. Conclude that if the degree
of
is odd and the coefficients of
are real, then
has at least one real root. (You may use the fundamental theorem of algebra, if needed.) Conclude also that if
is of degree four and has real coefficients, then
can be factored as the product of two quadratic polynomials with real coefficients. (Does this follow “directly” from the argument described in lecture?)
3. Solve exercises 54-56 from Chapter 3 of the book.
4. Show directly that if are real numbers, then at least one of the solutions of
is a real number. What I mean is that, rather than appealing to problem 2, you want to look at the solutions obtained by Cardano’s method as described in lecture, and argue directly from the formulas so obtained that at least one of the solutions must be real. Be careful, since your argument should not give you that all three roots are real, since this is not true in general.
5. Show directly that a quartic with complex coefficients admits only 4 roots. What I mean is that, rather than appealing to problem 1, you want to look at the solutions obtained by Ferrari’s method as described in lecture, and argue directly that they only produce 4 roots, even though, in principle, they produce 24 (since they involve solving a cubic and then taking a square root to obtain parameters from which four solutions are then found).
[…] Homework 2, due February 20, at the beginning of lecture. Possibly related posts: (automatically generated)116b- SyllabusHow to Annoy Your Friends’ Parents and Waste Useful Household Items – An …The Myth About HomeworkHomework battles and the biggest genius in the school, part I […]
[…] -Homework set 4 I am not happy with the solutions I received for problems 4 and 5 of Homework set 2 so, for this new set, due March 2 at the beginning of lecture, you must redo these two problems […]
[…] Homework 2, due February 20, at the beginning of lecture. […]
[…] am not happy with the solutions I received for problems 4 and 5 of Homework set 2 so, for this new set, due March 2 at the beginning of lecture, you must redo these two problems […]