Suppose that is a field and that It may be that is also a field, using the same operations of For example, if then we could have

Definition 15. If is a field and we say that is a subfield of if is a field with the operations of

Let’s examine this definition in some detail. Part of what this is saying is that

If then also i.e., is closed under addition.

If then also i.e., is closed under multiplication.

However, this is not enough. For example, is not a field but it is closed under the addition and multiplication operations of The problem with is that it does not have additive or multiplicative inverses of its elements.

Proposition 16. Suppose that is a field and that

If then

If and then

Proof. Add the additive inverse to both sides of the first equation, and multiply by the multiplicative inverse both sides of the second equation.

The point of Proposition 16 is the following: Suppose that is a subfield of Write for the -th element of and for the -th element of Then in particular, must belong to Similarly, so belongs to as long as contains some element other than But, of course, if is to be a field, then it must have at least two elements, so one of them must be different from

Proposition 17. Suppose is a field and that

If then

If then and

Proposition 17 can be proved by a very similar argument to that of Proposition 16, so I omit the proof. The point of this proposition is that if is a subfield of and then the additive inverse of from the point of view of and its additive inverse from the point of view of must coincide. Similarly, the multiplicative inverse from the point of view of of any nonzero element of is the same as its multiplicative inverse from the point of view of Hence, to properties 1,2 listed above we can add:

3. If then

And:

4. If and then

It turns out that 1–4 characterize subfields:

Theorem 18. Suppose is a field and If satisfies 1–4 and has at least two elements, then is a subfield of

Notice that we cannot remove the assumption that has two elements. For example, satisfies properties 1–4 but is not a field.

We will prove this theorem next lecture and use it to produce many new examples of fields.

This entry was posted on Friday, February 20th, 2009 at 1:11 pm and is filed under 305: Abstract Algebra I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is that the existence of a nonprincipal ultrafilter does not imply the existence of a Vitali set. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${ […]

Marginalia to a theorem of Silver (see also this link) by Keith I. Devlin and R. B. Jensen, 1975. A humble title and yet, undoubtedly, one of the most important papers of all time in set theory.

Given a positive integer $a$, the Ramsey number $R(a)$ is the least $n$ such that whenever the edges of the complete graph $K_n$ are colored using only two colors, we necessarily have a copy of $K_a$ with all its edges of the same color. For example, $R(3)= 6$, which is usually stated by saying that in a party of 6 people, necessarily there are 3 that know e […]

No, this is not consistent. Todorčević has shown in ZF that, in fact, there is no function $F\!:\mathcal W(S)\to S$ with the property you require. Here, $\mathcal W(S)$ is the collection of subsets of $S$ that are well-orderable. This is corollary 6 in MR0793235 (87d:03126). Todorčević, Stevo. Partition relations for partially ordered sets. Acta Math. 155 (1 […]

As suggested by Gerald, the notion was first introduced for groups. Given a directed system of groups, their direct limit was defined as a quotient of their direct product (which was referred to as their "weak product"). The general notion is a clear generalization, although the original reference only deals with groups. As mentioned by Cameron Zwa […]

Gödel sentences are by construction $\Pi^0_1$ statements, that is, they have the form "for all $n$ ...", where ... is a recursive statement (think "a statement that a computer can decide"). For instance, the typical Gödel sentence for a system $T$ coming from the second incompleteness theorem says that "for all $n$ that code a proof […]

When I first saw the question, I remembered there was a proof on MO using Ramsey theory, but couldn't remember how the argument went, so I came up with the following, that I first posted as a comment: A cute proof using Schur's theorem: Fix $a$ in your semigroup $S$, and color $n$ and $m$ with the same color whenever $a^n=a^m$. By Schur's theo […]

It depends on what you are doing. I assume by lower level you really mean high level, or general, or 2-digit class. In that case, 54 is general topology, 26 is real functions, 03 is mathematical logic and foundations. "Point-set topology" most likely refers to the stuff in 54, or to the theory of Baire functions, as in 26A21, or to descriptive set […]

In the presence of the axiom of foundation, it is true as you indicate that no set belongs to itself, and so the definition of transitive set can be written with $\subset$ (or $\subsetneq$, whichever symbol you prefer). However, one may study also set theories where foundation fails, and then it is natural to define transitive sets in a way that allows self- […]

You do not need much to recover the full ultrapower. In fact, the $\Sigma_1$-weak Skolem hull should suffice, where the latter is defined by using not all Skolem functions but only those for $\Sigma_1$-formulas, and not even that, but only those functions defined as follows: given a $\Sigma_1$ formula $\varphi(t,y_1,\dots,y_n)$, let $f_\varphi:{}^nN\to N$ be […]

[…] -Fields (5) At the end of last lecture we stated a theorem giving an easy characterization of subfields of a given field We begin by […]

[…] the end of last lecture we stated a theorem giving an easy characterization of subfields of a given field We begin by […]