Three-player perfect information games are usually undetermined

Recently, I gave the talk Undeterminacy and choice (Indeterminación y elección), at the XVII Colombian Mathematical Congress, in Cali. Slides can be found at my talks page.

The talk addressed the results of my recent paper on with Richard Ketchersid, mentioned in my previous entry, and some extensions, about which I expect to be posting soon. Afterwards, somebody asked me how much of the theory of determinacy can be extended to three-player (or more) perfect information games. Not much.

The following easy example was suggested by Richard Ketchersid: There is an undetermined one-move game where players I, II, III play 0 or 1, with I playing first, then II, and finally III. To see this, say that and are the numbers played, and that:

Player I wins iff

Player II wins iff and

Player III wins if

(One may think of this game as a perfect information version of paper-rock-scissors.) I imagine this observation is ancient, and would be grateful for a reference.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, September 7th, 2009 at 4:20 pm and is filed under Conferences. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

2 Responses to Three-player perfect information games are usually undetermined

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

I feel this question may be a duplicate, because I am pretty certain I first saw the paper I mention below in an answer here. You may be interested in reading the following: MR2141502 (2006c:68092) Reviewed. Calude, Cristian S.(NZ-AUCK-C); Jürgensen, Helmut(3-WON-C). Is complexity a source of incompleteness? (English summary), Adv. in Appl. Math. 35 (2005), […]

The smallest such ordinal is $0$ because you defined your rank (height) inappropriately (only successor ordinals are possible). You want to define the rank of a node without successors as $0$, and of a node $a$ with successors as the supremum of the set $\{\alpha+1\mid\alpha$ is the rank of an immediate successor of $a\}$. With this modification, the smalles […]

The perfect reference for this is MR2562557 (2010j:03061) Reviewed. Steel, J. R.(1-CA). The derived model theorem. In Logic Colloquium 2006. Proceedings of Annual European Conference on Logic of the Association for Symbolic Logic held at the Radboud University, Nijmegen, July 27–August 2, 2006, S. B. Cooper, H. Geuvers, A. Pillay and J. Väänänen, eds., Lectu […]

Consider $A=\{(x,y)\in\mathbb R^2\mid x\notin L[y]\}$. Check that this set is $\Pi^1_2$ (this is similar to the proof that there is a $\Delta^1_2$ well-ordering in $L$). The point is that $A$ does not admit a projective uniformization. It does not really matter that the number of Cohen reals you added is $\aleph_2$; any uncountable number would work. The rea […]

All I know about it is a paper by Benedikt on infinite games with more than two players:

http://www.illc.uva.nl/Publications/ResearchReports/PP-2003-19.text.pdf

It will be appear in Journal of Applied Logic. But I suspect that this is not the oldest reference for the undeterminacy.

Thanks! The paper looks interesting, and I didn’t know anything about this area.