Problem 1 is (simplification of part of) exercise 6.6.16 from the book.

To solve the question, use coordinates as in the accompanying figure in the book, so the origin is at ground level, and increases downwards. The units of are feet. For a fix with the thin slice of water in the tank at depth and of tickness has volume and weighs This is a constant force, so the work required to remove it to ground level is just where is the depth at which the slice is located, i.e., Hence, The total work is obtained by adding all these contributions, i.e., ft-lb.

Problem 2 is exercise 9.2.16 from the book.

The curve is Since the graph is symmetric about the -axis (because whenever is in the graph, then so is ).

Since the graph is symmetric about the origin (because whenever is in the graph, then so is ).

Since the graph is symmetric about both the origin and the -axis, it is also symmetric about the -axis.

To sketch the curve, look first at Here so which is impossible, so there is nothing to graph here. Consider now what happens when As increases, increases, from to So the same occurs with This means that increases from to , and decreases from to The part with gives us a curve in the second quadrant, and the part with gives us its reflection about the origin. This part of the curve is in the fourth quadrant. Their reflections on the -axis complete the curve, which can be seen here.

Note that is undefined. This corresponds to the fact that at the origin the tangent to the curve is the -axis, as can be seen from the graph.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Saturday, September 19th, 2009 at 1:19 pm and is filed under 175: Calculus II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

I assume by $\aleph$ you mean $\mathfrak c$, the cardinality of the continuum. You can build $D$ by transfinite recursion: Well-order the continuum in type $\mathfrak c$. At stage $\alpha$ you add a point of $A_\alpha$ to your set, and one to its complement. You can always do this because at each stage fewer than $\mathfrak c$ many points have been selected. […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is negative. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${\mathfrak c}$ (This doesn't matter, all we need is that it is strictly larger. T […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\}$, and $\mathsf{ZFC}$ proves that $\phi$ and $\psi$ […]

Yes, the suggested rearrangement converges to 0. This is a particular case of a result of Martin Ohm: For $p$ and $q$ positive integers rearrange the sequence $$\left(\frac{(−1)^{n-1}} n\right)_{n\ge 1} $$ by taking the ﬁrst $p$ positive terms, then the ﬁrst $q$ negative terms, then the next $p$ positive terms, then the next $q$ negative terms, and so on. Th […]

Yes, by the incompleteness theorem. An easy argument is to enumerate the sentences in the language of arithmetic. Assign to each node $\sigma $ of the tree $2^{