These exercises (due September 28) are mostly meant to test your understanding of compactness.

Let be a nonstandard model of Show:

(Overspill) Suppose that is definable (with parameters) and that Show that is finite.

(Underspill) Suppose that is definable and that Show that there is some infinite such that all the elements of are larger than

Let be a nonstandard model of Here, is treated as a relation, and in we may have placed whatever functions and relations we may have need to reference in what follows; moreover, we assume that in our language we have a constant symbol for each real number. (Of course, this means that we are lifting the restriction that languages are countable.) To ease notation, let’s write for The convention is that we identify actual reals in with their copies in so we write rather than etc.

Show that is a nonstandard model of the theory of problem 1. (In particular, check that the indicated restrictions of and have range contained in )

A (nonstandard) real is finite iff there is some (finite) natural number such that Otherwise, it is infinite. A (nonstandard) real is infinitesimal iff but for all positive (finite) natural numbers one has that We write to mean that either is infinitesimal, or else it is Show that infinite and infinitesimal numbers exist. The monad of a real is the set of all such that which we may also write as and say that and are infinitesimally close. Show that the relation is an equivalence relation. Show that if a monad contains an actual real number, then this number is unique. Show that this is the case precisely if it is the monad of a finite number. In this case, write to indicate that the (actual) real is in the monad of We also say that is the standard part of

Show that a function is continuous at a real iff for all infinitesimal numbers

Suppose that is continuous on the closed interval Argue as follows to show that attains its maximum: For each positive integer there is some integer with such that Conclude that the same holds if is some infinite natural number, i.e., there is some (perhaps infinite) “natural number” with such that Let and argue that the maximum of is attained at

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Saturday, September 19th, 2009 at 12:46 pm and is filed under 502: Logic and set theory. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Given a language and an -structure a set is definable iff there is a formula with (distinct) free variables and there are elements such that, letting be the set of assignments such that for then for all with

In human: is definable iff it is the set of elements of that satisfy some formula. We allow said formula to use parameters, i.e., to refer to some fixed elements of

Type ‘latex’ immediately following the dollar sign, leave a space, and then the math text as you’d do in latex usually. See this announcement for more info.

The wordpress people tweak with the way latex is compiled every now and then, so sometimes strange errors that were not there before appear; but it works pretty decently, and it is getting better. (There seem to be a few silly things still: you want to write {} right before a [ if this is the first symbol in a math display, for example.)

Luca Trevisan devised a nice program, LaTeX2WP, to make the use of in WordPress pleasant rather than traumatic; I use it whenever I have a long post.

Now my concern is: If 0 is not an infinitesimal, then is reflexive. Namely, if then . That is, for all positive . But . So, cannot be infinitesimal. What am I missing here?

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

I assume by $\aleph$ you mean $\mathfrak c$, the cardinality of the continuum. You can build $D$ by transfinite recursion: Well-order the continuum in type $\mathfrak c$. At stage $\alpha$ you add a point of $A_\alpha$ to your set, and one to its complement. You can always do this because at each stage fewer than $\mathfrak c$ many points have been selected. […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is negative. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${\mathfrak c}$ (This doesn't matter, all we need is that it is strictly larger. T […]

(As I pointed out in a comment) yes, partial Woodinness is common in arguments in inner model theory. Accordingly, you obtain determinacy results addressing specific pointclasses (typically, well beyond projective). To illustrate this, let me "randomly" highlight two examples: See here for $\Sigma^1_2$-Woodin cardinals and, more generally, the noti […]

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A simple example is the permutation $\pi$ given by $\pi(n)=n+2$ if $n$ is even, $\pi(1)=0$, and otherwise $\pi(n)=n−2$. It should be clear that $\pi$ is computable and has the desired property. By the way, regarding the footnote: if a bijection is computable, so is its inverse, so $\pi^{-1}$ is computable as well. In general, given a computable bijection $\s […]

The question is asking to find all polynomials $f$ for which you can find $a,b\in\mathbb R$ with $a\ne b$ such that the displayed identity holds. The concrete numbers $a,b$ may very well depend on $f$. A priori, it may be that for some $f$ there is only one pair for which the identity holds, it may be that for some $f$ there are many such pairs, and it may a […]

The reflection principle is a theorem schema in ZFC, meaning that for each formula $\phi(\vec x)$ we can prove in ZFC a version of the principle for $\phi$. In particular, it gives us that if $\phi$ holds (in the universe of sets) then there is some ordinal $\alpha$ such that $V_\alpha\models \phi$. It follows from this that (assuming its consistency) $\math […]

All proofs of the Bernstein-Cantor-Schroeder theorem that I know either directly or with very little work produce an explicit bijection from any given pair of injections. There is an obvious injection from $[0,1]$ to $C[0,1]$ mapping each $t$ to the function constantly equal to $t$, so the question reduces to finding an explicit injection from $C[0,1]$ to $[ […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]

What was the precise definition of “definable” again. I can’t find it in the book anywhere.

Given a language and an -structure a set is

definableiff there is a formula with (distinct) free variables and there are elements such that, letting be the set of assignments such that for then for all withIn human: is definable iff it is the set of elements of that satisfy some formula. We allow said formula to use parameters, i.e., to refer to some fixed elements of

Thanks.

Is 0 considered an infinitesimal? By the definition above, 0 would be, but I always thought it was otherwise.

Ah, you are right! I’ve modified the text accordingly.

Making infinitesimals different from 0 now forces us to change slightly the definition of so I’ve done that as well.

Thank you. It’s clear now.

Also, how do you get LaTex to work on your blog? I noticed that you got the approximation symbol to show, but when I tried approx it didn’t work

Type ‘latex’ immediately following the dollar sign, leave a space, and then the math text as you’d do in latex usually. See this announcement for more info.

The wordpress people tweak with the way latex is compiled every now and then, so sometimes strange errors that were not there before appear; but it works pretty decently, and it is getting better. (There seem to be a few silly things still: you want to write {} right before a [ if this is the first symbol in a math display, for example.)

Luca Trevisan devised a nice program, LaTeX2WP, to make the use of in WordPress pleasant rather than traumatic; I use it whenever I have a long post.

Now my concern is: If 0 is not an infinitesimal, then is reflexive. Namely, if then . That is, for all positive . But . So, cannot be infinitesimal. What am I missing here?

[Addressed by the revised definition. -A.]