Problem 1 is Exercise 9.3.16 from the book. Here is a graph showing the cardioid and the circle. The easiest way to compute the required area is by subtracting the area of the circle from that of the cardioid. (Note that the circle is completely contained in the cardioid as, for each we have that This shows that in the portion of the circle in the first quadrant is within the portion of the cardiod there. The same holds in the fourth quadrant by symmetry. Of course, all of this also follows directly from the graph.)

The area of the cardioid is given by and the area of the circle is (note that as varies from to the whole circle is traveled once).

By symmetry, so the area we want is given by

Recall that so the integral is

Now note from the Cartesian graph of that so the area we want is just

Problem 2 is Exercise 9.5.50 from the book. Recall that the standard polar equation of a line not going through the origin is given by

where is the distance from the line to the origin, and is the angle of the point in the line that realizes this distance, i.e., are the polar coordinates of the point on the line closest to the origin.

There are at least two ways we can proceed:

1) We can directly find the distance from the line to the origin. To do this, we recall that the line that goes through the origin and is perpendicular to where is given by The point in closest to the origin is the intersection of these two lines. In the case that interests us, this is the intersection of and so or or so We have found that the point is closest in to the origin. Its distance is Its angle is on the fourth quadrant and satisfies i.e.,

Putting this together, is the desired equation.

2) The other method we saw in lecture is based in the fact that

and consists in first writing the Cartesian equation of the line directly in polar coordinates, and then using the resulting expression to find and We have so or This gives us

We find a constant such that and are the cosine and the sine of some angle, precisely We then have

To find this we use that for any so must satisfy or so The value of such that and is This means that the equation we are looking for is

This entry was posted on Friday, October 2nd, 2009 at 9:45 am and is filed under 175: Calculus II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

As suggested by Gerald, the notion was first introduced for groups. Given a directed system of groups, their direct limit was defined as a quotient of their direct product (which was referred to as their "weak product"). The general notion is a clear generalization, although the original reference only deals with groups. As mentioned by Cameron Zwa […]

A database of number fields, by Jürgen Klüners and Gunter Malle. (Note this is not the same as the one mentioned in this answer.) The site also provides links to similar databases.

As the other answer indicates, the yes answer to your question is known as the De Bruijn-Erdős theorem. This holds regardless of the size of the graph. The De Bruijn–Erdős theorem is a particular instance of what in combinatorics we call a compactness argument or Rado's selection principle, and its truth can be seen as a consequence of the topological c […]

Every $P_c$ has the size of the reals. For instance, suppose $\sum_n a_n=c$ and start by writing $\mathbb N=A\cup B$ where $\sum_{n\in A}a_n$ converges absolutely (to $a$, say). This is possible because $a_n\to 0$: Let $m_0

Consider a subset $\Omega$ of $\mathbb R$ of size $\aleph_1$ and ordered in type $\omega_1$. (This uses the axiom of choice.) Let $\mathcal F$ be the $\sigma$-algebra generated by the initial segments of $\Omega$ under the well-ordering (so all sets in $\mathcal F$ are countable or co-countable), with the measure that assigns $0$ to the countable sets and $1 […]

Sure. A large class of examples comes from the partition calculus. A simple result of the kind I have in mind is the following: Any infinite graph contains either a copy of the complete graph on countably many vertices or of the independent graph on countably many vertices. However, if we want to find an uncountable complete or independent graph, it is not e […]

I think that, from a modern point of view, there is a misunderstanding in the position that you suggest in your question. Really, "set theory" should be understood as an umbrella term that covers a whole hierarchy of ZFC-related theories. Perhaps one of the most significant advances in foundations is the identification of the consistency strength h […]

I'll only discuss the first question. As pointed out by Asaf, the argument is not correct, but something interesting can be said anyway. There are a couple of issues. A key problem is with the idea of an "explicitly constructed" set. Indeed, for instance, there are explicitly constructed sets of reals that are uncountable and of size continuum […]

The question seems to be: Assume that there is a Vitali set $V$. Is there an explicit bijection between $V$ and $\mathbb R$? The answer is yes, by an application of the Cantor-Schröder-Bernstein theorem: there is an explicit injection from $\mathbb R$ into $\mathbb R/\mathbb Q$ (provably in ZF, this requires some thought, or see the answers to this question) […]

If a set $X$ is well-founded (essentially, if it contains no infinite $\in$-descending chains), then indeed $\emptyset$ belongs to its transitive closure, that is, either $X=\emptyset$ or $\emptyset\in\bigcup X$ or $\emptyset\in\bigcup\bigcup X$ or... However, this does not mean that there is some $n$ such that the result of iterating the union operation $n$ […]