Problem 1 is Exercise 9.3.16 from the book. Here is a graph showing the cardioid and the circle. The easiest way to compute the required area is by subtracting the area of the circle from that of the cardioid. (Note that the circle is completely contained in the cardioid as, for each we have that This shows that in the portion of the circle in the first quadrant is within the portion of the cardiod there. The same holds in the fourth quadrant by symmetry. Of course, all of this also follows directly from the graph.)

The area of the cardioid is given by and the area of the circle is (note that as varies from to the whole circle is traveled once).

By symmetry, so the area we want is given by

Recall that so the integral is

Now note from the Cartesian graph of that so the area we want is just

Problem 2 is Exercise 9.5.50 from the book. Recall that the standard polar equation of a line not going through the origin is given by

where is the distance from the line to the origin, and is the angle of the point in the line that realizes this distance, i.e., are the polar coordinates of the point on the line closest to the origin.

There are at least two ways we can proceed:

1) We can directly find the distance from the line to the origin. To do this, we recall that the line that goes through the origin and is perpendicular to where is given by The point in closest to the origin is the intersection of these two lines. In the case that interests us, this is the intersection of and so or or so We have found that the point is closest in to the origin. Its distance is Its angle is on the fourth quadrant and satisfies i.e.,

Putting this together, is the desired equation.

2) The other method we saw in lecture is based in the fact that

and consists in first writing the Cartesian equation of the line directly in polar coordinates, and then using the resulting expression to find and We have so or This gives us

We find a constant such that and are the cosine and the sine of some angle, precisely We then have

To find this we use that for any so must satisfy or so The value of such that and is This means that the equation we are looking for is

just as with the previous method.

Typeset using LaTeX2WP.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Friday, October 2nd, 2009 at 9:45 am and is filed under 175: Calculus II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

The study of finite choice axioms is quite interesting. Besides the reference given in Asaf's answer, there are a few papers covering this topic in detail. If you can track it down, I suggest you read MR0360275 (50 #12725) Reviewed. Conway, J. H. Effective implications between the "finite'' choice axioms. In Cambridge Summer School in Mat […]

I feel this question may be a duplicate, because I am pretty certain I first saw the paper I mention below in an answer here. You may be interested in reading the following: MR2141502 (2006c:68092) Reviewed. Calude, Cristian S.(NZ-AUCK-C); Jürgensen, Helmut(3-WON-C). Is complexity a source of incompleteness? (English summary), Adv. in Appl. Math. 35 (2005), […]

The smallest such ordinal is $0$ because you defined your rank (height) inappropriately (only successor ordinals are possible). You want to define the rank of a node without successors as $0$, and of a node $a$ with successors as the supremum of the set $\{\alpha+1\mid\alpha$ is the rank of an immediate successor of $a\}$. With this modification, the smalles […]

The perfect reference for this is MR2562557 (2010j:03061) Reviewed. Steel, J. R.(1-CA). The derived model theorem. In Logic Colloquium 2006. Proceedings of Annual European Conference on Logic of the Association for Symbolic Logic held at the Radboud University, Nijmegen, July 27–August 2, 2006, S. B. Cooper, H. Geuvers, A. Pillay and J. Väänänen, eds., Lectu […]