I want to sketch here the proof that if is a sequence of finite nonempty sets, and then has size for any nonprincipal ultrafilter on

The argument I present is due to Frayne, Morel, Scott, Reduced direct products, Fundamenta Mathematica, 51 (1962), 195–228.

The topic of the size of ultraproducts is very delicate and some open questions remain. For ultraproducts of finite structures, this is continued in Keisler, Ultraproducts of finite sets, The Journal of Symbolic Logic, 32 (1967), 47–57, and finally in Shelah, On the cardinality of ultraproduct of finite sets, The Journal of Symbolic Logic, 35 (1) (Mar., 1970), 83–84. Shelah shows that if an ultraproduct of finite sets is infinite, say of size then His argument is a very nice application of non-standard analysis. The case that interests us is easier.

Clearly,

so it suffices to show that

We need the following combinatorial lemma:

Lemma 1There is a family of functions such that:

For any and any and

If are in then is finite.

Proof: For each let be given by

where is the characteristic function of i.e., if and else

Then is as needed.

Let so the sets are all finite and partition For each let be a list of distinct elements of

Let be as in the lemma. For let be given by

where is such that

Note that if are in then

is a finite union of finite sets and therefore finite. Hence, and we are done.

This entry was posted on Friday, October 2nd, 2009 at 1:37 pm and is filed under 502: Logic and set theory. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is that the existence of a nonprincipal ultrafilter does not imply the existence of a Vitali set. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${ […]

Marginalia to a theorem of Silver (see also this link) by Keith I. Devlin and R. B. Jensen, 1975. A humble title and yet, undoubtedly, one of the most important papers of all time in set theory.

Given a positive integer $a$, the Ramsey number $R(a)$ is the least $n$ such that whenever the edges of the complete graph $K_n$ are colored using only two colors, we necessarily have a copy of $K_a$ with all its edges of the same color. For example, $R(3)= 6$, which is usually stated by saying that in a party of 6 people, necessarily there are 3 that know e […]

No, this is not consistent. Todorčević has shown in ZF that, in fact, there is no function $F\!:\mathcal W(S)\to S$ with the property you require. Here, $\mathcal W(S)$ is the collection of subsets of $S$ that are well-orderable. This is corollary 6 in MR0793235 (87d:03126). Todorčević, Stevo. Partition relations for partially ordered sets. Acta Math. 155 (1 […]

As suggested by Gerald, the notion was first introduced for groups. Given a directed system of groups, their direct limit was defined as a quotient of their direct product (which was referred to as their "weak product"). The general notion is a clear generalization, although the original reference only deals with groups. As mentioned by Cameron Zwa […]

Gödel sentences are by construction $\Pi^0_1$ statements, that is, they have the form "for all $n$ ...", where ... is a recursive statement (think "a statement that a computer can decide"). For instance, the typical Gödel sentence for a system $T$ coming from the second incompleteness theorem says that "for all $n$ that code a proof […]

When I first saw the question, I remembered there was a proof on MO using Ramsey theory, but couldn't remember how the argument went, so I came up with the following, that I first posted as a comment: A cute proof using Schur's theorem: Fix $a$ in your semigroup $S$, and color $n$ and $m$ with the same color whenever $a^n=a^m$. By Schur's theo […]

It depends on what you are doing. I assume by lower level you really mean high level, or general, or 2-digit class. In that case, 54 is general topology, 26 is real functions, 03 is mathematical logic and foundations. "Point-set topology" most likely refers to the stuff in 54, or to the theory of Baire functions, as in 26A21, or to descriptive set […]

In the presence of the axiom of foundation, it is true as you indicate that no set belongs to itself, and so the definition of transitive set can be written with $\subset$ (or $\subsetneq$, whichever symbol you prefer). However, one may study also set theories where foundation fails, and then it is natural to define transitive sets in a way that allows self- […]

You do not need much to recover the full ultrapower. In fact, the $\Sigma_1$-weak Skolem hull should suffice, where the latter is defined by using not all Skolem functions but only those for $\Sigma_1$-formulas, and not even that, but only those functions defined as follows: given a $\Sigma_1$ formula $\varphi(t,y_1,\dots,y_n)$, let $f_\varphi:{}^nN\to N$ be […]