Problem 1 is Exercise 7.1.36 from the book. Here is a graph showing the curve for

We rotate about the line the region bounded by the -axis and this curve.

To find its volume, a first natural attempt would be to use the washer method. We would then attempt to compute the volume as

where is the maximum of for and, for any given value of with and are the values of with such that

Unfortunately, this does not seem to be the best approach, as there does not seem to be a reasonable way of solving for the equation

(In fact, this equation cannot be solved in terms of elementary functions.

Similarly, there is no way of finding exactly what the value of is in terms of elementary functions.)

Since this approach seems to lead us nowhere, we now try to compute the volume using the shell method. Now the volume is expressed as

This expression looks approachable with the techniques we have studied. First, let’s rewrite the integral as

We compute both expressions using integration by parts:

To find we use and so and we can take Hence

We recognize from the graph of that the second expression is zero, and we have:

Similarly, for we have and so and and

The last expression is once more computed using parts, now with and so and This gives

Hence

Finally, the required volume is

Problem 2 asked to evaluate

A first attempt may go by using integration by parts, with and Unfortunately, this approach would not lead to simpler expressions, as both integrals and derivatives of and carry radicals.

If the expression inside the square root were of the form or we could use a trigonometric substitution. However, is not of this form. On the other hand, in Chapter 9 we saw that it is sometimes useful to complete squares, so we may want to try that here. We have:

This suggest trying the trigonometric substitution for We have and Also, when we have or and when we have or

In terms of the integral becomes

To evaluate expressions of this form, we use the identity and obtain

The second expression we recognize as For the first, we use either the reduction formula found in lecture, or integration by parts:

or

from which we get

Finally,

so the required integral equals

Typeset using LaTeX2WP. Here is a printable version of this post.

This entry was posted on Sunday, October 18th, 2009 at 1:27 pm and is filed under 175: Calculus II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

As suggested by Gerald, the notion was first introduced for groups. Given a directed system of groups, their direct limit was defined as a quotient of their direct product (which was referred to as their "weak product"). The general notion is a clear generalization, although the original reference only deals with groups. As mentioned by Cameron Zwa […]

A database of number fields, by Jürgen Klüners and Gunter Malle. (Note this is not the same as the one mentioned in this answer.) The site also provides links to similar databases.

As the other answer indicates, the yes answer to your question is known as the De Bruijn-Erdős theorem. This holds regardless of the size of the graph. The De Bruijn–Erdős theorem is a particular instance of what in combinatorics we call a compactness argument or Rado's selection principle, and its truth can be seen as a consequence of the topological c […]

Every $P_c$ has the size of the reals. For instance, suppose $\sum_n a_n=c$ and start by writing $\mathbb N=A\cup B$ where $\sum_{n\in A}a_n$ converges absolutely (to $a$, say). This is possible because $a_n\to 0$: Let $m_0

Consider a subset $\Omega$ of $\mathbb R$ of size $\aleph_1$ and ordered in type $\omega_1$. (This uses the axiom of choice.) Let $\mathcal F$ be the $\sigma$-algebra generated by the initial segments of $\Omega$ under the well-ordering (so all sets in $\mathcal F$ are countable or co-countable), with the measure that assigns $0$ to the countable sets and $1 […]

Sure. A large class of examples comes from the partition calculus. A simple result of the kind I have in mind is the following: Any infinite graph contains either a copy of the complete graph on countably many vertices or of the independent graph on countably many vertices. However, if we want to find an uncountable complete or independent graph, it is not e […]

I think that, from a modern point of view, there is a misunderstanding in the position that you suggest in your question. Really, "set theory" should be understood as an umbrella term that covers a whole hierarchy of ZFC-related theories. Perhaps one of the most significant advances in foundations is the identification of the consistency strength h […]

I'll only discuss the first question. As pointed out by Asaf, the argument is not correct, but something interesting can be said anyway. There are a couple of issues. A key problem is with the idea of an "explicitly constructed" set. Indeed, for instance, there are explicitly constructed sets of reals that are uncountable and of size continuum […]

The question seems to be: Assume that there is a Vitali set $V$. Is there an explicit bijection between $V$ and $\mathbb R$? The answer is yes, by an application of the Cantor-Schröder-Bernstein theorem: there is an explicit injection from $\mathbb R$ into $\mathbb R/\mathbb Q$ (provably in ZF, this requires some thought, or see the answers to this question) […]

If a set $X$ is well-founded (essentially, if it contains no infinite $\in$-descending chains), then indeed $\emptyset$ belongs to its transitive closure, that is, either $X=\emptyset$ or $\emptyset\in\bigcup X$ or $\emptyset\in\bigcup\bigcup X$ or... However, this does not mean that there is some $n$ such that the result of iterating the union operation $n$ […]