Problem 1 is Exercise 7.1.36 from the book. Here is a graph showing the curve for

We rotate about the line the region bounded by the -axis and this curve.

To find its volume, a first natural attempt would be to use the washer method. We would then attempt to compute the volume as

where is the maximum of for and, for any given value of with and are the values of with such that

Unfortunately, this does not seem to be the best approach, as there does not seem to be a reasonable way of solving for the equation

(In fact, this equation cannot be solved in terms of elementary functions.

Similarly, there is no way of finding exactly what the value of is in terms of elementary functions.)

Since this approach seems to lead us nowhere, we now try to compute the volume using the shell method. Now the volume is expressed as

This expression looks approachable with the techniques we have studied. First, let’s rewrite the integral as

We compute both expressions using integration by parts:

To find we use and so and we can take Hence

We recognize from the graph of that the second expression is zero, and we have:

Similarly, for we have and so and and

The last expression is once more computed using parts, now with and so and This gives

Hence

Finally, the required volume is

Problem 2 asked to evaluate

A first attempt may go by using integration by parts, with and Unfortunately, this approach would not lead to simpler expressions, as both integrals and derivatives of and carry radicals.

If the expression inside the square root were of the form or we could use a trigonometric substitution. However, is not of this form. On the other hand, in Chapter 9 we saw that it is sometimes useful to complete squares, so we may want to try that here. We have:

This suggest trying the trigonometric substitution for We have and Also, when we have or and when we have or

In terms of the integral becomes

To evaluate expressions of this form, we use the identity and obtain

The second expression we recognize as For the first, we use either the reduction formula found in lecture, or integration by parts:

or

from which we get

Finally,

so the required integral equals

Typeset using LaTeX2WP. Here is a printable version of this post.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Sunday, October 18th, 2009 at 1:27 pm and is filed under 175: Calculus II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

The only reference I know for precisely these matters is the handbook chapter MR2768702. Koellner, Peter; Woodin, W. Hugh. Large cardinals from determinacy. In Handbook of set theory. Vols. 1, 2, 3, 1951–2119, Springer, Dordrecht, 2010. (Particularly, section 7.) For closely related topics, see also the work of Yong Cheng (and of Cheng and Schindler) on Harr […]

As other answers point out, yes, one needs choice. The popular/natural examples of models of ZF+DC where all sets of reals are measurable are models of determinacy, and Solovay's model. They are related in deep ways, actually, through large cardinals. (Under enough large cardinals, $L({\mathbb R})$ of $V$ is a model of determinacy and (something stronge […]

Throughout the question, we only consider primes of the form $3k+1$. A reference for cubic reciprocity is Ireland & Rosen's A Classical Introduction to Modern Number Theory. How can I count the relative density of those $p$ (of the form $3k+1$) such that the equation $2=3x^3$ has no solutions modulo $p$? Really, even pointers on how to say anything […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

Let $s$ be the supremum of the $\mu$-measures of members of $\mathcal G$. By definition of supremum, for each $n$, there is $G_n\in\mathcal G$ with $\mu(G_n)>s-1/n$. Letting $G=\bigcup_n G_n$, then $G\in \mathcal G$ since $\mathcal G$ is closed under countable unions, and $\mu(G)=s$, since it is at least $\sup_n\mu(G_n)$ but it is at most $s$ (by definiti […]

The result you are trying to prove is false. For example, if $a=\omega+1$ and $b=\omega+\omega$, then $a+b=\omega\cdot 3>b$. Here is what is true: first, the key result you should establish (by induction) is that An ordinal $\alpha>0$ has the property that for all $\beta

Very briefly: Yes, there are several programs being developed that can be understood as pursuing new axioms for set theory. For the question itself of whether pursuing new axioms is a reasonably line of inquiry, see the following (in particular, the paper by John Steel): MR1814122 (2002a:03007). Feferman, Solomon; Friedman, Harvey M.; Maddy, Penelope; Steel, […]

This is a very interesting question and the subject of current research in set theory. There are, however, some caveats. Say that a set of reals is $\aleph_1$-dense if and only if it meets each interval in exactly $\aleph_1$-many points. It is easy to see that such sets exist, have size $\aleph_1$, and in fact, if $A$ is $\aleph_1$-dense, then between any tw […]