403/503 – The fundamental theorem of algebra via linear algebra

The argument we gave in class for the existence of eigenvectors for operators on finite dimensional complex vector spaces (and for the existence of invariant planes for operators on finite dimensional real vector spaces) uses the fundamental theorem of algebra. One can actually prove the existence of eigenvectors without appealing to this result, although the argument is more complicated.

As a corollary, one obtains a linear algebra proof of the fundamental theorem of algebra, which seems like a nice outcome.

The details can be found in a nice paper by Harm Derksen, currently available through his website or in JSTOR (American Mathematical Monthly, Vol. 110 (7) (2003), 620-623). A variation of the proof (perhaps more accessible) is in this paper by Keith Conrad, currently available through his website.

There is a slight disadvantage to both papers (which is perhaps the reason why I am not presenting their result in class) if we want to follow the approach of the textbook, and avoid introducing determinants at this stage. The problem is Corollary 4 in Conrad’s paper or Lemma 4 in Derksen’s, that operators on odd dimensional real vector spaces admit eigenvectors. Their proofs use determinants. The proof we gave (or are in the midst of giving) in lecture avoids determinants, but of course uses the fundamental theorem (so we can find an invariant plane and then argue by induction).

Can you find a way of obtaining this result without appealing to either determinants or the fundamental theorem, so we have a proof of the existence of eigenvectors compatible with the philosophy of the textbook and entirely self-contained?

(Note that an odd degree polynomial with real coefficients has a real root, and this can be proved very easily. From this, the argument for operators on does not require the fundamental theorem, and we can extend this to operators on , again avoiding the theorem, because we have explicit formulas that allow us to factor a quartic into the product of two quadratics. Can we find an argument for operators on ?)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Friday, February 26th, 2010 at 3:01 pm and is filed under 403/503: Linear Algebra II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

Please send an email to mathrev@ams.org, explaining the issue. (This is our all-purpose email address; any mistakes you discover, not just regarding references, you can let us know there.) Give us some time, I promise we'll get to it. However, if it seems as if the request somehow fell through the cracks, you can always contact one of your friendly edit […]

The characterization mentioned by Mohammad in his answer really dates back to Lev Bukovský in the early 70s, and, as Ralf and Fabiana recognize in their note, has nothing to do with $L$ or with reals (in their note, they indicate that after proving their result, they realized they had essentially rediscovered Bukovský's theorem). See MR0332477 (48 #1080 […]

I give an example (perhaps the best-known example) below, but let me first discuss equiconsistency rather than straight equivalence. Usually an equiconsistency is really the sort of result you are after anyway: You want to establish that certain statements in the universe where choice holds correspond to determinacy, which implies the failure of choice. The […]

The other answers have correctly identified the issue. Let me highlight the difficulty: it is relatively consistent with the axioms of set theory except for the axiom of choice that there are infinite sets which do not contain a copy of the natural numbers (that is, there are infinite sets $X$ such that there is no injection $f\!:\mathbb N\to X$). This means […]

This is $\aleph_\omega^{\aleph_0}$. First of all, this cardinal is an obvious upper bound. Second, if $A\subseteq\omega$ is infinite, $\prod_{i\in A}\aleph_i$ is clearly at least $\aleph_\omega$. The result follows, by splitting $\omega$ into countably many infinite sets. In general, the rules governing infinite products and exponentials are far from being w […]

If $\lambda$ and $\kappa$ are cardinals, $\lambda^\kappa$ represents the cardinality of the set of functions $f\!:A\to B$ where $A,B$ are fixed sets of cardinality $\kappa,\lambda$ respectively. (One needs to check this is independent of which specific sets $A,B$ we pick, of course.) At least for finite numbers, this is something you may have encountered in […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $$A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\},$$ and $\mathsf{ZFC}$ proves that $\phi$ and $\psi […]