403/503 – The fundamental theorem of algebra via linear algebra

The argument we gave in class for the existence of eigenvectors for operators on finite dimensional complex vector spaces (and for the existence of invariant planes for operators on finite dimensional real vector spaces) uses the fundamental theorem of algebra. One can actually prove the existence of eigenvectors without appealing to this result, although the argument is more complicated.

As a corollary, one obtains a linear algebra proof of the fundamental theorem of algebra, which seems like a nice outcome.

The details can be found in a nice paper by Harm Derksen, currently available through his website or in JSTOR (American Mathematical Monthly, Vol. 110 (7) (2003), 620-623). A variation of the proof (perhaps more accessible) is in this paper by Keith Conrad, currently available through his website.

There is a slight disadvantage to both papers (which is perhaps the reason why I am not presenting their result in class) if we want to follow the approach of the textbook, and avoid introducing determinants at this stage. The problem is Corollary 4 in Conrad’s paper or Lemma 4 in Derksen’s, that operators on odd dimensional real vector spaces admit eigenvectors. Their proofs use determinants. The proof we gave (or are in the midst of giving) in lecture avoids determinants, but of course uses the fundamental theorem (so we can find an invariant plane and then argue by induction).

Can you find a way of obtaining this result without appealing to either determinants or the fundamental theorem, so we have a proof of the existence of eigenvectors compatible with the philosophy of the textbook and entirely self-contained?

(Note that an odd degree polynomial with real coefficients has a real root, and this can be proved very easily. From this, the argument for operators on does not require the fundamental theorem, and we can extend this to operators on , again avoiding the theorem, because we have explicit formulas that allow us to factor a quartic into the product of two quadratics. Can we find an argument for operators on ?)

This entry was posted on Friday, February 26th, 2010 at 3:01 pm and is filed under 403/503: Linear Algebra II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

This is a very interesting question (and I really want to see what other answers you receive). I do not know of any general metatheorems ensuring that what you ask (in particular, about consistency strength) is the case, at least under reasonable conditions. However, arguments establishing the proof theoretic ordinal of a theory $T$ usually entail this. You […]

This is false; take a look at https://en.wikipedia.org/wiki/Analytic_set for a quick introduction. For details, look at Kechris's book on Classical Descriptive Set Theory. There you will find also some information on the history of this result, how it was originally thought to be true, and how the discovery of counterexamples led to the creation of desc […]

This is open. In $L(\mathbb R)$ the answer is yes. Hugh has several proofs of this, and it remains one of the few unpublished results in the area. The latest version of the statement (that I know of) is the claim in your parenthetical remark at the end. This gives determinacy in $L(\mathbb R)$ using, for example, a reflection argument. (I mentioned this a wh […]

A classical reference is Hypothèse du Continu by Waclaw Sierpiński (1934), available through the Virtual Library of Science as part of the series Mathematical Monographs of the Institute of Mathematics of the Polish Academy of Sciences. Sierpiński discusses equivalences and consequences. The statements covered include examples from set theory, combinatorics, […]

There is a new journal of the European Mathematical Society that seems perfect for these articles: EMS Surveys in Mathematical Sciences. The description at the link reads: The EMS Surveys in Mathematical Sciences is dedicated to publishing authoritative surveys and high-level expositions in all areas of mathematical sciences. It is a peer-reviewed periodical […]

You may be interested in the following paper: Lorenz Halbeisen, and Norbert Hungerbühler. The cardinality of Hamel bases of Banach spaces, East-West Journal of Mathematics, 2, (2000) 153-159. There, Lorenz and Norbert prove a few results about the size of Hamel bases of arbitrary infinite dimensional Banach spaces. In particular, they show: Lemma 3.4. If $K\ […]

You just need to show that $\sum_{\alpha\in F}\alpha^k=0$ for $k=0,1,\dots,q-2$. This is clear for $k=0$ (understanding $0^0$ as $1$). But $\alpha^q-\alpha=0$ for all $\alpha$ so $\alpha^{q-1}-1=0$ for all $\alpha\ne0$, and the result follows from the Newton identities.

Nice question. Let me first point out that the Riemann Hypothesis and $\mathsf{P}$-vs-$\mathsf{NP}$ are much simpler than $\Pi^1_2$: The former is $\Pi^0_1$, see this MO question, and the assertion that $\mathsf{P}=\mathsf{NP}$ is a $\Pi^0_2$ statement ("for every code for a machine of such and such kind there is a code for a machine of such other kind […]

For brevity's sake, say that a theory $T$ is nice if $T$ is a consistent theory that can interpret Peano Arithmetic and admits a recursively enumerable set of axioms. For any such $T$, the statement "$T$ is consistent" can be coded as an arithmetic statement (saying that no number codes a proof of a contradiction from the axioms of $T$). What […]