403/503 – The fundamental theorem of algebra via linear algebra

The argument we gave in class for the existence of eigenvectors for operators on finite dimensional complex vector spaces (and for the existence of invariant planes for operators on finite dimensional real vector spaces) uses the fundamental theorem of algebra. One can actually prove the existence of eigenvectors without appealing to this result, although the argument is more complicated.

As a corollary, one obtains a linear algebra proof of the fundamental theorem of algebra, which seems like a nice outcome.

The details can be found in a nice paper by Harm Derksen, currently available through his website or in JSTOR (American Mathematical Monthly, Vol. 110 (7) (2003), 620-623). A variation of the proof (perhaps more accessible) is in this paper by Keith Conrad, currently available through his website.

There is a slight disadvantage to both papers (which is perhaps the reason why I am not presenting their result in class) if we want to follow the approach of the textbook, and avoid introducing determinants at this stage. The problem is Corollary 4 in Conrad’s paper or Lemma 4 in Derksen’s, that operators on odd dimensional real vector spaces admit eigenvectors. Their proofs use determinants. The proof we gave (or are in the midst of giving) in lecture avoids determinants, but of course uses the fundamental theorem (so we can find an invariant plane and then argue by induction).

Can you find a way of obtaining this result without appealing to either determinants or the fundamental theorem, so we have a proof of the existence of eigenvectors compatible with the philosophy of the textbook and entirely self-contained?

(Note that an odd degree polynomial with real coefficients has a real root, and this can be proved very easily. From this, the argument for operators on does not require the fundamental theorem, and we can extend this to operators on , again avoiding the theorem, because we have explicit formulas that allow us to factor a quartic into the product of two quadratics. Can we find an argument for operators on ?)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Friday, February 26th, 2010 at 3:01 pm and is filed under 403/503: Linear Algebra II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

I feel this question may be a duplicate, because I am pretty certain I first saw the paper I mention below in an answer here. You may be interested in reading the following: MR2141502 (2006c:68092) Reviewed. Calude, Cristian S.(NZ-AUCK-C); Jürgensen, Helmut(3-WON-C). Is complexity a source of incompleteness? (English summary), Adv. in Appl. Math. 35 (2005), […]

The smallest such ordinal is $0$ because you defined your rank (height) inappropriately (only successor ordinals are possible). You want to define the rank of a node without successors as $0$, and of a node $a$ with successors as the supremum of the set $\{\alpha+1\mid\alpha$ is the rank of an immediate successor of $a\}$. With this modification, the smalles […]

The perfect reference for this is MR2562557 (2010j:03061) Reviewed. Steel, J. R.(1-CA). The derived model theorem. In Logic Colloquium 2006. Proceedings of Annual European Conference on Logic of the Association for Symbolic Logic held at the Radboud University, Nijmegen, July 27–August 2, 2006, S. B. Cooper, H. Geuvers, A. Pillay and J. Väänänen, eds., Lectu […]

Consider $A=\{(x,y)\in\mathbb R^2\mid x\notin L[y]\}$. Check that this set is $\Pi^1_2$ (this is similar to the proof that there is a $\Delta^1_2$ well-ordering in $L$). The point is that $A$ does not admit a projective uniformization. It does not really matter that the number of Cohen reals you added is $\aleph_2$; any uncountable number would work. The rea […]