One way of doing this is to follow the Euclidean algorithm to compute the g.c.d. of 13 and 8:

Now we work from these equations, starting with the last one and going up, expressing the remainders as linear combinations of the other two numbers:

Since we have

Since we have

Since we have

We have found that satisfy

There are, of course, other ways we could have found these numbers, including trial and error: Simply list the multiples of 13 in order: 13, 26, 39, …, and note that 39 is 1 shy of a multiple of 8: giving the same solution as before.

Problem 2 asks for integers neither of which is 0, and such that

Perhaps the easiest solution is to make

Problem 3 asks for integers different from those in problem 1, such that

One way of finding these numbers is by adding the solutions to problems 1 and 2:

so

We could have also subtracted the solution to problem 2 from the solution to problem 1, to obtain

Or we could have squared the solution to problem 1: or

or

Problem 4 asks for the number of injective functions from into

Let be 1-1. There are 5 possibilities for the value Whatever it is, can take any value in other than so there are 4 possibilities for The value can be anything in other than or so there are 3 possibilities for Finally, can take any of the remaining 2 values. This gives a total of injective functions.

Note that this is the same as the number of lists of length 4 without repetitions with values taken from the set

This entry was posted on Tuesday, April 6th, 2010 at 10:38 am and is filed under 187: Discrete mathematics. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

No, this is not consistent. Todorčević has shown in ZF that, in fact, there is no function $F\!:\mathcal W(S)\to S$ with the property you require. Here, $\mathcal W(S)$ is the collection of subsets of $S$ that are well-orderable. This is corollary 6 in MR0793235 (87d:03126). Todorčević, Stevo. Partition relations for partially ordered sets. Acta Math. 155 (1 […]

As suggested by Gerald, the notion was first introduced for groups. Given a directed system of groups, their direct limit was defined as a quotient of their direct product (which was referred to as their "weak product"). The general notion is a clear generalization, although the original reference only deals with groups. As mentioned by Cameron Zwa […]

A database of number fields, by Jürgen Klüners and Gunter Malle. (Note this is not the same as the one mentioned in this answer.) The site also provides links to similar databases.

As the other answer indicates, the yes answer to your question is known as the De Bruijn-Erdős theorem. This holds regardless of the size of the graph. The De Bruijn–Erdős theorem is a particular instance of what in combinatorics we call a compactness argument or Rado's selection principle, and its truth can be seen as a consequence of the topological c […]

Every $P_c$ has the size of the reals. For instance, suppose $\sum_n a_n=c$ and start by writing $\mathbb N=A\cup B$ where $\sum_{n\in A}a_n$ converges absolutely (to $a$, say). This is possible because $a_n\to 0$: Let $m_0

Sure. A large class of examples comes from the partition calculus. A simple result of the kind I have in mind is the following: Any infinite graph contains either a copy of the complete graph on countably many vertices or of the independent graph on countably many vertices. However, if we want to find an uncountable complete or independent graph, it is not e […]

I think that, from a modern point of view, there is a misunderstanding in the position that you suggest in your question. Really, "set theory" should be understood as an umbrella term that covers a whole hierarchy of ZFC-related theories. Perhaps one of the most significant advances in foundations is the identification of the consistency strength h […]

I'll only discuss the first question. As pointed out by Asaf, the argument is not correct, but something interesting can be said anyway. There are a couple of issues. A key problem is with the idea of an "explicitly constructed" set. Indeed, for instance, there are explicitly constructed sets of reals that are uncountable and of size continuum […]

The question seems to be: Assume that there is a Vitali set $V$. Is there an explicit bijection between $V$ and $\mathbb R$? The answer is yes, by an application of the Cantor-Schröder-Bernstein theorem: there is an explicit injection from $\mathbb R$ into $\mathbb R/\mathbb Q$ (provably in ZF, this requires some thought, or see the answers to this question) […]

If a set $X$ is well-founded (essentially, if it contains no infinite $\in$-descending chains), then indeed $\emptyset$ belongs to its transitive closure, that is, either $X=\emptyset$ or $\emptyset\in\bigcup X$ or $\emptyset\in\bigcup\bigcup X$ or... However, this does not mean that there is some $n$ such that the result of iterating the union operation $n$ […]