Set theory seminar – Marion Scheepers: Coding strategies (II)

For the first talk, see here. The second talk took place on September 21.

We want to prove of Theorem 1, that if , then II has a winning coding strategy in .

The argument makes essential use of the following:

Coding Lemma.Let be a poset such that for all ,

Suppose that . Then there is a map such that

Proof. Note that is infinite. We may then identify it with some infinite cardinal . It suffices to show that for any partial ordering on as in the hypothesis, there is a map such that for any , there is a with such that .

Well-order in type , and call this ordering. We define by transfinite recursion through . Given , let be the set of its -predecessors,

.

Our inductive assumption is that for any pair , we have chosen some with , and defined . Let us denote by the domain of the partial function we have defined so far. Note that . Since has size , it must meet . Take to be least in this intersection, and set , thus completing the stage of this recursion.

At the end, the resulting map can be extended to a map with domain in an arbitrary way, and this function clearly is as required.

Back to the proof of . Fix a perfect information winning strategy for II in , and a set cofinal in of least possible size. Pick a such that for all we have .

Given , let . Now we consider two cases, depending on whether for some we have or not.

Suppose first that for all . Then the Coding Lemma applies with in the role of , and as chosen. Let be as in the lemma.

We define as follows:

Given , let be such that , and set .

Given with , let be such that , and set .

Clearly, is winning: In any run of the game with II following , player II’s moves cover their responses following , and we are done since is winning.

The second case, when there is some with , will be dealt with in the next talk.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, September 27th, 2010 at 11:31 am and is filed under Set theory seminar. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

4 Responses to Set theory seminar – Marion Scheepers: Coding strategies (II)

I thought about this question a while ago, while teaching a topics course. Since one can easily check that $${}|{\mathbb R}|=|{\mathcal P}({\mathbb N})|$$ by a direct construction that does not involve diagonalization, the question can be restated as: Is there a proof of Cantor's theorem that ${}|X|

First of all, note (as Monroe does in his question) that if $\mathbb P,\mathbb Q$ are ccc, then $\mathbb P\times\mathbb Q$ is $\mathfrak c^+$-cc, as an immediate consequence of the Erdős-Rado theorem $(2^{\aleph_0})^+\to(\aleph_1)^2_2$. (This is to say, if $\mathbb P$ and $\mathbb Q$ do not admit uncountable antichains, then any antichain in their product ha […]

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

A notion now considered standard of primitive recursive set function is introduced in MR0281602 (43 #7317). Jensen, Ronald B.; Karp, Carol. Primitive recursive set functions. In 1971 Axiomatic Set Thoory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) pp. 143–176 Amer. Math. Soc., Providence, R.I. The concept is use […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\}$, and $\mathsf{ZFC}$ proves that $\phi$ and $\psi$ […]

[…] Scheepers: Coding strategies (III) For the second talk (and a link to the first one), see here. The third talk took place on September […]

[…] Next talk. 43.614000 -116.202000 […]

[…] the second talk (and a link to the first one), see here. The third talk took place on September […]

[…] Set theory seminar – Marion Scheepers: Coding strategies (II) « A kind of library says: August 28, 2012 at 12:15 pm […]