Set theory seminar – Marion Scheepers: Coding strategies (II)

For the first talk, see here. The second talk took place on September 21.

We want to prove of Theorem 1, that if , then II has a winning coding strategy in .

The argument makes essential use of the following:

Coding Lemma.Let be a poset such that for all ,

Suppose that . Then there is a map such that

Proof. Note that is infinite. We may then identify it with some infinite cardinal . It suffices to show that for any partial ordering on as in the hypothesis, there is a map such that for any , there is a with such that .

Well-order in type , and call this ordering. We define by transfinite recursion through . Given , let be the set of its -predecessors,

.

Our inductive assumption is that for any pair , we have chosen some with , and defined . Let us denote by the domain of the partial function we have defined so far. Note that . Since has size , it must meet . Take to be least in this intersection, and set , thus completing the stage of this recursion.

At the end, the resulting map can be extended to a map with domain in an arbitrary way, and this function clearly is as required.

Back to the proof of . Fix a perfect information winning strategy for II in , and a set cofinal in of least possible size. Pick a such that for all we have .

Given , let . Now we consider two cases, depending on whether for some we have or not.

Suppose first that for all . Then the Coding Lemma applies with in the role of , and as chosen. Let be as in the lemma.

We define as follows:

Given , let be such that , and set .

Given with , let be such that , and set .

Clearly, is winning: In any run of the game with II following , player II’s moves cover their responses following , and we are done since is winning.

The second case, when there is some with , will be dealt with in the next talk.

This entry was posted on Monday, September 27th, 2010 at 11:31 am and is filed under math.LO, Set theory seminar. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

4 Responses to Set theory seminar – Marion Scheepers: Coding strategies (II)

As suggested by Gerald, the notion was first introduced for groups. Given a directed system of groups, their direct limit was defined as a quotient of their direct product (which was referred to as their "weak product"). The general notion is a clear generalization, although the original reference only deals with groups. As mentioned by Cameron Zwa […]

A database of number fields, by Jürgen Klüners and Gunter Malle. (Note this is not the same as the one mentioned in this answer.) The site also provides links to similar databases.

As the other answer indicates, the yes answer to your question is known as the De Bruijn-Erdős theorem. This holds regardless of the size of the graph. The De Bruijn–Erdős theorem is a particular instance of what in combinatorics we call a compactness argument or Rado's selection principle, and its truth can be seen as a consequence of the topological c […]

Every $P_c$ has the size of the reals. For instance, suppose $\sum_n a_n=c$ and start by writing $\mathbb N=A\cup B$ where $\sum_{n\in A}a_n$ converges absolutely (to $a$, say). This is possible because $a_n\to 0$: Let $m_0

Consider a subset $\Omega$ of $\mathbb R$ of size $\aleph_1$ and ordered in type $\omega_1$. (This uses the axiom of choice.) Let $\mathcal F$ be the $\sigma$-algebra generated by the initial segments of $\Omega$ under the well-ordering (so all sets in $\mathcal F$ are countable or co-countable), with the measure that assigns $0$ to the countable sets and $1 […]

Sure. A large class of examples comes from the partition calculus. A simple result of the kind I have in mind is the following: Any infinite graph contains either a copy of the complete graph on countably many vertices or of the independent graph on countably many vertices. However, if we want to find an uncountable complete or independent graph, it is not e […]

I think that, from a modern point of view, there is a misunderstanding in the position that you suggest in your question. Really, "set theory" should be understood as an umbrella term that covers a whole hierarchy of ZFC-related theories. Perhaps one of the most significant advances in foundations is the identification of the consistency strength h […]

I'll only discuss the first question. As pointed out by Asaf, the argument is not correct, but something interesting can be said anyway. There are a couple of issues. A key problem is with the idea of an "explicitly constructed" set. Indeed, for instance, there are explicitly constructed sets of reals that are uncountable and of size continuum […]

The question seems to be: Assume that there is a Vitali set $V$. Is there an explicit bijection between $V$ and $\mathbb R$? The answer is yes, by an application of the Cantor-Schröder-Bernstein theorem: there is an explicit injection from $\mathbb R$ into $\mathbb R/\mathbb Q$ (provably in ZF, this requires some thought, or see the answers to this question) […]

If a set $X$ is well-founded (essentially, if it contains no infinite $\in$-descending chains), then indeed $\emptyset$ belongs to its transitive closure, that is, either $X=\emptyset$ or $\emptyset\in\bigcup X$ or $\emptyset\in\bigcup\bigcup X$ or... However, this does not mean that there is some $n$ such that the result of iterating the union operation $n$ […]

[…] Scheepers: Coding strategies (III) For the second talk (and a link to the first one), see here. The third talk took place on September […]

[…] Next talk. 43.614000 -116.202000 […]

[…] the second talk (and a link to the first one), see here. The third talk took place on September […]

[…] Set theory seminar – Marion Scheepers: Coding strategies (II) « A kind of library says: August 28, 2012 at 12:15 pm […]