Problem 1 tells us that a rectangular piece of cardboard of dimensions is used to make an open-top box by cutting out a small square of side from each corner and bending up the sides. If , then the volume of the box is . Starting from this initial guess of , the problem asks us to use Newton’s method to find a value of for which the box has volume 100, accurate to 3 significant figures.

To solve the problem, first we observe that for any , the volume of the box is , as a quick diagram would indicate. We want to solve the equation

using Newton’s method. Since the method is designed to solve equations of the form , we take . In the method, we begin with an initial guess and then compute further guesses by means of the formula

In the case that concerns us, and (using the product rule) .

The file below was produced using the software package Sage, which can be downloaded for free at the link. (As a side note, if you expect through your careers you will be doing a significant amount of non-trivial computations, it may be a reasonable investment of time to learn how to use one or two software packages. I like Sage personally, but of course there are many other alternatives, although not all are free.)

In the file, the value of each new guess is shown both exactly (as a fraction) and then numerically. As can be seen from the computations above, is a very reasonable approximation to the solution of .

Problem 2 tells us that the U.S. post office will accept a box for shipment only if the sum of the length and girth (distance around) is at most 108 in. We are asked to find the dimensions of the largest acceptable box with square front and back.

To solve this problem, we imagine a box with square front of side length , and width . We are told that . We are also asked to maximize the volume of the box. But the volume can be easily computed by the formula . Clearly, if we fix the value of and increase the value of , the volume increases. This means that we may as well suppose that . Then and

We need to optimize this volume subject to the restrictions that and . For this, we solve . We have

We have that iff or . Hence, we need to check the value of when , , and .

In the first and last cases, . In the second one, . It follows that this is the maximum volume, and it is achieved when inches, and inches.

This entry was posted on Thursday, November 11th, 2010 at 2:53 pm and is filed under 170: Calculus I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

You assume $\omega_\alpha\subseteq M$ and $X\in M$ so that $X$ belongs to the transitive collapse of $M$ (because if $\pi$ is the collapsing map, $\pi(X)=\pi[X]=X$. You assume $|M|=\aleph_\alpha$ so that the transitive collapse of $M$ has size $\aleph_\alpha$. Since you also have that this transitive collapse is of the form $L_\beta$ for some $\beta$, it fol […]

Perhaps the following may clarify the comments: for any ordinal $\delta$, there is a Boolean-valued extension of the universe of sets where $2^{\aleph_0}>\aleph_\delta$ holds. If you rather talk of models than Boolean-valued extensions, what this says is that we can force while preserving all ordinals, and in fact all initial ordinals, and make the contin […]

I do not know of any active set theorists who think large cardinals are inconsistent. At least, within the realm of cardinals we have seriously studied. [Reinhardt suggested an ultimate axiom of the form "there is a non-trivial elementary embedding $j:V\to V$". Though some serious set theorists found it of possible interest immediately following it […]

There is a fantastic (and not too well-known) result of Shelah stating that $L({\mathcal P}(\lambda))$ is a model of choice whenever $\lambda$ is a singular strong limit of uncountable cofinality. This is a consequence of a more general theorem that can be found in 4.6/6.7 of "Set Theory without choice: not everything on cofinality is possible", Ar […]

In set theory, definitely the notion of a Woodin cardinal. First, it is not an entirely straightforward notion to guess. Significant large cardinals were up to that point defined as critical points of certain elementary embeddings. This is not the case here: Woodin cardinals need not be measurable. If $\kappa$ is Woodin, then $V_\kappa$ is a model of set the […]

Take $a_n=p$, where $p$ is the smallest prime dividing $n$. If a subsequence converges, it converges to a prime $p$, in which case except for finitely many initial terms, the sequence is eventually constant with value $p$. But the number of initial terms is arbitrary.

The precise consistency strength of the global failure of the generalized continuum hypothesis is somewhat technical to state. As far as I know, it has not been published, but I think we have a decent understanding of what the correct statement should be. The most relevant paper towards this result is MR2224051 (2007d:03082). Gitik, Moti Merimovich, Carmi. P […]

There are integrable functions that are not derivatives: Any function that is continuous except at a single point, where it has a jump discontinuity, is an example. (Derivatives have the intermediate value property.) More interestingly, we can ask whether the existence of an antiderivative ensures integrability. The answer depends on what integral you are co […]

$0^¶$ is the sharp for an inner model with a strong cardinal in the same sense that $0^\dagger$ is the sharp for an inner model with a measurable cardinal. In terms of mice, this is the first mouse containing two overlapping extenders. The effect of this is that, by iterating its top measure throughout the ordinals, you extend the bottom extender in a variet […]

Clearly $\omega^\omega\le(\omega+n)^\omega$. Also, $(\omega+n)^\omega\le (\omega^2)^\omega=\omega^{(2\cdot \omega)}=\omega^\omega$, and the equality follows. If you do not feel comfortable with the move from $(\omega^2)^\omega$ to $\omega^{(2\cdot \omega)}$, simply note the left-hand side is $\omega\cdot\omega\cdot\omega\cdot\dots$, where there are $2\cdot\o […]