Problem 1 tells us that a rectangular piece of cardboard of dimensions is used to make an open-top box by cutting out a small square of side from each corner and bending up the sides. If , then the volume of the box is . Starting from this initial guess of , the problem asks us to use Newton’s method to find a value of for which the box has volume 100, accurate to 3 significant figures.

To solve the problem, first we observe that for any , the volume of the box is , as a quick diagram would indicate. We want to solve the equation

using Newton’s method. Since the method is designed to solve equations of the form , we take . In the method, we begin with an initial guess and then compute further guesses by means of the formula

In the case that concerns us, and (using the product rule) .

The file below was produced using the software package Sage, which can be downloaded for free at the link. (As a side note, if you expect through your careers you will be doing a significant amount of non-trivial computations, it may be a reasonable investment of time to learn how to use one or two software packages. I like Sage personally, but of course there are many other alternatives, although not all are free.)

In the file, the value of each new guess is shown both exactly (as a fraction) and then numerically. As can be seen from the computations above, is a very reasonable approximation to the solution of .

Problem 2 tells us that the U.S. post office will accept a box for shipment only if the sum of the length and girth (distance around) is at most 108 in. We are asked to find the dimensions of the largest acceptable box with square front and back.

To solve this problem, we imagine a box with square front of side length , and width . We are told that . We are also asked to maximize the volume of the box. But the volume can be easily computed by the formula . Clearly, if we fix the value of and increase the value of , the volume increases. This means that we may as well suppose that . Then and

We need to optimize this volume subject to the restrictions that and . For this, we solve . We have

We have that iff or . Hence, we need to check the value of when , , and .

In the first and last cases, . In the second one, . It follows that this is the maximum volume, and it is achieved when inches, and inches.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, November 11th, 2010 at 2:53 pm and is filed under 170: Calculus I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

Please send an email to mathrev@ams.org, explaining the issue. (This is our all-purpose email address; any mistakes you discover, not just regarding references, you can let us know there.) Give us some time, I promise we'll get to it. However, if it seems as if the request somehow fell through the cracks, you can always contact one of your friendly edit […]

The characterization mentioned by Mohammad in his answer really dates back to Lev Bukovský in the early 70s, and, as Ralf and Fabiana recognize in their note, has nothing to do with $L$ or with reals (in their note, they indicate that after proving their result, they realized they had essentially rediscovered Bukovský's theorem). See MR0332477 (48 #1080 […]

I give an example (perhaps the best-known example) below, but let me first discuss equiconsistency rather than straight equivalence. Usually an equiconsistency is really the sort of result you are after anyway: You want to establish that certain statements in the universe where choice holds correspond to determinacy, which implies the failure of choice. The […]

The other answers have correctly identified the issue. Let me highlight the difficulty: it is relatively consistent with the axioms of set theory except for the axiom of choice that there are infinite sets which do not contain a copy of the natural numbers (that is, there are infinite sets $X$ such that there is no injection $f\!:\mathbb N\to X$). This means […]

This is $\aleph_\omega^{\aleph_0}$. First of all, this cardinal is an obvious upper bound. Second, if $A\subseteq\omega$ is infinite, $\prod_{i\in A}\aleph_i$ is clearly at least $\aleph_\omega$. The result follows, by splitting $\omega$ into countably many infinite sets. In general, the rules governing infinite products and exponentials are far from being w […]

If $\lambda$ and $\kappa$ are cardinals, $\lambda^\kappa$ represents the cardinality of the set of functions $f\!:A\to B$ where $A,B$ are fixed sets of cardinality $\kappa,\lambda$ respectively. (One needs to check this is independent of which specific sets $A,B$ we pick, of course.) At least for finite numbers, this is something you may have encountered in […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $$A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\},$$ and $\mathsf{ZFC}$ proves that $\phi$ and $\psi […]