Problem 1 tells us that a rectangular piece of cardboard of dimensions is used to make an open-top box by cutting out a small square of side from each corner and bending up the sides. If , then the volume of the box is . Starting from this initial guess of , the problem asks us to use Newton’s method to find a value of for which the box has volume 100, accurate to 3 significant figures.

To solve the problem, first we observe that for any , the volume of the box is , as a quick diagram would indicate. We want to solve the equation

using Newton’s method. Since the method is designed to solve equations of the form , we take . In the method, we begin with an initial guess and then compute further guesses by means of the formula

In the case that concerns us, and (using the product rule) .

The file below was produced using the software package Sage, which can be downloaded for free at the link. (As a side note, if you expect through your careers you will be doing a significant amount of non-trivial computations, it may be a reasonable investment of time to learn how to use one or two software packages. I like Sage personally, but of course there are many other alternatives, although not all are free.)

In the file, the value of each new guess is shown both exactly (as a fraction) and then numerically. As can be seen from the computations above, is a very reasonable approximation to the solution of .

Problem 2 tells us that the U.S. post office will accept a box for shipment only if the sum of the length and girth (distance around) is at most 108 in. We are asked to find the dimensions of the largest acceptable box with square front and back.

To solve this problem, we imagine a box with square front of side length , and width . We are told that . We are also asked to maximize the volume of the box. But the volume can be easily computed by the formula . Clearly, if we fix the value of and increase the value of , the volume increases. This means that we may as well suppose that . Then and

We need to optimize this volume subject to the restrictions that and . For this, we solve . We have

We have that iff or . Hence, we need to check the value of when , , and .

In the first and last cases, . In the second one, . It follows that this is the maximum volume, and it is achieved when inches, and inches.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, November 11th, 2010 at 2:53 pm and is filed under 170: Calculus I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

I am looking for references discussing two inequalities that come up in the study of the dynamics of Newton's method on real-valued polynomials (in one variable). The inequalities are fairly different, but it seems to make sense to ask about both of them in the same post. Most of the details below are fairly elementary, they are mostly included for comp […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

First of all, $f(z)+e^z\ne 0$ by the first inequality. It follows that $e^z/(f(z)+e^z)$ is entire, and bounded above. You should be able to conclude from that.

Yes. The standard way of defining these sequences goes by assigning in an explicit fashion to each limit ordinal $\alpha$, for as long as possible, an increasing sequence $\alpha_n$ that converges to $\alpha$. Once this is done, we can define $f_\alpha$ by diagonalizing, so $f_\alpha(n)=f_{\alpha_n}(n)$ for all $n$. Of course there are many possible choices […]

I disagree with the advice of sending a paper to a journal before searching the relevant literature. It is almost guaranteed that a paper on the fundamental theorem of algebra (a very classical and well-studied topic) will be rejected if you do not include mention on previous proofs, and comparisons, explaining how your proof differs from them, etc. It is no […]

No, the rank of a set $x$ is the least $\alpha$ such that $x\in V_{\alpha+1}$. Note that if $\alpha$ is limit, any $x\in V_\alpha$ belongs to some $V_\beta$ with $\beta