1. From the textbook: Solve exercises 2.14, 3.3, 3.4, 3.9, 3.10, 3.16, 3.25.

2. a.Suppose that satisfies linearity (i.e., what the book calls additivity). Suppose also that is continuous. Show that is linear (i.e., it also satisfies homogeneity). b. Give an example of a that is additive but not homogeneous.

3. The goal of this exercise is to state and prove the rank-nullity theorem (Theorem 3.4 from the book) without the assumption that is finite dimensional. What we want to show is that if are vector spaces and is linear, then

.

First, we need to make sense of . Recall that if is a set, an equivalence relation on is a relation such that:

for any (reflexivity),

Whenever , then also (symmetry),

If and , then also (transitivity).

Given such an equivalence relation, the equivalence class of an element is the subset consisting of all those such that . The quotient is the collection of all equivalence classes, so if then there is some such that .

The point is that the equivalence classes form a partition of into pairwise disjoint, non-empty sets: Each is nonempty, since Clearly, the union of all the classes is (again, because any is in the class ), and if , then in fact (check this).

Ok. Back to . Define, in , an equivalence relation by: iff (Check that this is an equivalence relation). Then, as a set, we define to be . The reason why the null space is even mentioned here is because of the following (check this): iff .

We want to define addition in and scalar multiplication so that is actually a vector space.

Given and in , set , where if and , then . The problem with this definition is that in general there may be infinitely many such that and infinitely many such that . In order for this definition to make sense, we need to prove that for any such , we . Show this.

Given , and a scalar , define , where if , then . As before, we need to check that this is well-defined, i.e., that if , then also .

Check that is indeed a vector space with the operations we just defined.

Now we want to define a linear transformation from to , and argue that it is an isomorphism. Define by where . Once again, check that this is well-defined. Also, check that this is indeed linear, and a bijection.

Finally, to see that this is the “right” version of Theorem 3.4, we want to verify that if is finite dimensional. Prove this directly (i.e., without using the statement of Theorem 3.4).

This entry was posted on Friday, February 11th, 2011 at 4:13 pm and is filed under 403/503: Linear Algebra II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Marginalia to a theorem of Silver (see also this link) by Keith I. Devlin and R. B. Jensen, 1975. A humble title and yet, undoubtedly, one of the most important papers of all time in set theory.

Given a positive integer $a$, the Ramsey number $R(a)$ is the least $n$ such that whenever the edges of the complete graph $K_n$ are colored using only two colors, we necessarily have a copy of $K_a$ with all its edges of the same color. For example, $R(3)= 6$, which is usually stated by saying that in a party of 6 people, necessarily there are 3 that know e […]

No, this is not consistent. Todorčević has shown in ZF that, in fact, there is no function $F\!:\mathcal W(S)\to S$ with the property you require. Here, $\mathcal W(S)$ is the collection of subsets of $S$ that are well-orderable. This is corollary 6 in MR0793235 (87d:03126). Todorčević, Stevo. Partition relations for partially ordered sets. Acta Math. 155 (1 […]

As suggested by Gerald, the notion was first introduced for groups. Given a directed system of groups, their direct limit was defined as a quotient of their direct product (which was referred to as their "weak product"). The general notion is a clear generalization, although the original reference only deals with groups. As mentioned by Cameron Zwa […]

A database of number fields, by Jürgen Klüners and Gunter Malle. (Note this is not the same as the one mentioned in this answer.) The site also provides links to similar databases.

Let me add something to Noah's nice answer. If there are transitive set models of set theory, then there are such models of $V=L$, and therefore there is a countable $\alpha$ such that $L_\alpha$ is a model (by the Löwenheim–Skolem theorem and condensation). Since $L_\alpha$ is countable, for any forcing poset $\mathbb P\in L_\alpha$ there are (in $L$) […]

The answer depends on the underlying set theory and the actual symbol under consideration, whether $\in$ or $\subseteq$. In standard (ZF) set theory, the axiom of foundation prevents the existence of any set as specified. The reason is that sets have a rank, and the rank of any member of a set $A$ is strictly smaller than that of $A$. However, the rank of po […]

Sure. A large class of examples comes from the partition calculus. A simple result of the kind I have in mind is the following: Any infinite graph contains either a copy of the complete graph on countably many vertices or of the independent graph on countably many vertices. However, if we want to find an uncountable complete or independent graph, it is not e […]

I think that, from a modern point of view, there is a misunderstanding in the position that you suggest in your question. Really, "set theory" should be understood as an umbrella term that covers a whole hierarchy of ZFC-related theories. Perhaps one of the most significant advances in foundations is the identification of the consistency strength h […]

I'll only discuss the first question. As pointed out by Asaf, the argument is not correct, but something interesting can be said anyway. There are a couple of issues. A key problem is with the idea of an "explicitly constructed" set. Indeed, for instance, there are explicitly constructed sets of reals that are uncountable and of size continuum […]

Thanks, Tommy. I think it is fixed now.

Hi Dr. Caicedo,

I just want to point out a possible typo. I believe is supposed to be

May the Math Be With You!

Tommy