This homework set is due Monday, March 21 at the beginning of lecture. Problems 1-5 are required from everybody, and graduate students should also work on problem 6. (Of course, everybody is more than welcome to work on everything, including the remarks on mentioned at the end of problem 6.)

Solve problems 5.3, 5.6, 5.8, 5.10, 5.11, 5.14, 5.20, 5.21, 5.23 from the book.

Solve problems 6.6, 6.7, 6.8 from the book.

The taxicab norm on is defined by setting where . Show that this is indeed a norm, and that there is no inner product on for which . Find two non-congruent non-degenerate triangles with sides of length 1, 1, 2. (Of course, lengths are computed with respect to this norm, not the usual one).

Prove Lagrange’s identity: If , then . Note that this implies the Cauchy-Schwarz inequality for the usual inner product on .

Prove the Cauchy-Schwarz inequality for the usual product in as follows: Given , consider the function as a quadratic in , and deduce the inequality by examining the discriminant of .

Consider a unit square . Inscribe in exactly squares with no common interior point. (The squares do not need to cover all of .) Denote by the side lengths of these squares, and define Show that , and that equality holds iff is a perfect square. (An 80+ years old open problem of Erdös is to find all for which . Currently, it is only known that for all , , , and that if , then is a perfect square.)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, March 7th, 2011 at 4:13 pm and is filed under 403/503: Linear Algebra II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

I learned of this problem through Su Gao, who heard of it years ago while a post-doc at Caltech. David Gale introduced this game in the 70s, I believe. I am only aware of two references in print: Richard K. Guy. Unsolved problems in combinatorial games. In Games of No Chance, (R. J. Nowakowski ed.) MSRI Publications 29, Cambridge University Press, 1996, pp. […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

The two concepts are different. For example, $\omega$, the first infinite ordinal, is the standard example of an inductive set according to the first definition, but is not inductive in the second sense. In fact, no set can be inductive in both senses (any such putative set would contain all ordinals). In the context of set theory, the usual use of the term […]

I will show that for any positive integers $n,\ell,k$ there is an $M$ so large that for all positive integers $i$, if $i/M\le \ell$, then the difference $$ \left(\frac iM\right)^n-\left(\frac{i-1}M\right)^n $$ is less than $1/k$. Let's prove this first, and then argue that the result follows from it. Note that $$ (i+1)^n-i^n=\sum_{k=0}^{n-1}\binom nk i^ […]

I think it is cleaner to argue without induction. If $n$ is a positive integer and $n\ge 8$, then $7n$ is both less than $n^2$ and a multiple of $n$, so at most $n^2-n$ and therefore $7n+1$ is at most $n^2-n+1

Let PRA be the theory of Primitive recursive arithmetic. This is a subtheory of PA, and it suffices to prove the incompleteness theorem. It is perhaps not the easiest theory to work with, but the point is that a proof of incompleteness can be carried out in a significantly weaker system than the theories to which incompleteness actually applies. It is someti […]