This set is due the last day of lecture, Friday May 6.

Let be an entire function,

,

where the series converges for all complex numbers .

Basic results about power series give us that the series converges absolutely, i.e.,

for all , and that for any , if is a series such that , then converges as well.

Given a finite dimensional inner product space , and a , we want to define , in a way that it is again a linear operator on . The most common example is when . This “exponential matrix” has applications in differential equations and elsewhere.

To make sense of , we define making use of the power series of :

Of course, the problem is to make sure that this expression makes sense. (Use the results of Homework 4 to) show that this series converges, and moreover

Fixing a basis for , suppose that is diagonal. Compute in that case. In particular, in , find where

Show that, in general, the computation of reduces to the computation of for a matrix in Jordan canonical form.

For

a Jordan block, show that in order to actually find reduces to finding formulas for for Find this formula, and use it to find a formula for . It may be useful to review the basics of Taylor series for this.

As an application, find for and .

Finally, given , show that is invertible and find

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Friday, April 22nd, 2011 at 2:43 pm and is filed under 403/503: Linear Algebra II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

When we’re supposing that T is diagonal, do you mean the matrix associated to T is diagonal? Are we still computing f(T) or then f(M(T))? I think I’m a little confused as to when we’re using the matrices or the linear operators in the function f.

(As I pointed out in a comment) yes, partial Woodinness is common in arguments in inner model theory. Accordingly, you obtain determinacy results addressing specific pointclasses (typically, well beyond projective). To illustrate this, let me "randomly" highlight two examples: See here for $\Sigma^1_2$-Woodin cardinals and, more generally, the noti […]

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

All proofs of the Bernstein-Cantor-Schroeder theorem that I know either directly or with very little work produce an explicit bijection from any given pair of injections. There is an obvious injection from $[0,1]$ to $C[0,1]$ mapping each $t$ to the function constantly equal to $t$, so the question reduces to finding an explicit injection from $C[0,1]$ to $[ […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]

"There are" examples of discontinuous homomorphisms between Banach algebras. However, the quotes are there because the question is independent of the usual axioms of set theory. I quote from the introduction to W. Hugh Woodin, "A discontinuous homomorphism from $C(X)$ without CH", J. London Math. Soc. (2) 48 (1993), no. 2, 299-315, MR1231 […]

This is Hausdorff's formula. Recall that $\tau^\lambda$ is the cardinality of the set ${}^\lambda\tau$ of functions $f\!:\lambda\to\tau$, and that $\kappa^+$ is regular for all $\kappa$. Now, there are two possibilities: If $\alpha\ge\tau$, then $2^\alpha\le\tau^\alpha\le(2^\alpha)^\alpha=2^\alpha$, so $\tau^\alpha=2^\alpha$. In particular, if $\alpha\g […]

Fix a model $M$ of a theory for which it makes sense to talk about $\omega$ ($M$ does not need to be a model of set theory, it could even be simply an ordered set with a minimum in which every element has an immediate successor and every element other than the minimum has an immediate predecessor; in this case we could identify $\omega^M$ with $M$ itself). W […]

I changed the last matrix to have a non-diagonalizable example.

Hello Dr. Caicedo,

When we’re supposing that T is diagonal, do you mean the matrix associated to T is diagonal? Are we still computing f(T) or then f(M(T))? I think I’m a little confused as to when we’re using the matrices or the linear operators in the function f.

thanks,

Hi Rachel: Yes; once we fix a basis , we can identified with the matrix , and by saying that is diagonal I meant that is.