This is homework 3, due Monday, October 17, at the beginning of lecture.
- Recall the Baire category theorem: The intersection of countably many dense open sets in a complete metric space is dense. Recall that a
set is one that can be written as the intersection of countably many open sets.
Show that in a complete metric space, the intersection of countably many dense sets is again a dense
set. Is the union of two
sets again a
set?
Show that is not a
subset of
.
Since is countable, we can enumerate it as
. For
let
Note that each is open, that
for each
, that
, and that (for each
) the sum of the lengths of the intervals that make up
is at most
.
Does this mean that ? If yes, please provide a proof. If not, describe as concretely as possible an irrational number that belongs to this intersection.
- Recall that a nowhere dense set is a set
whose closure has empty interior:
. A set is meager (or of the first category) iff it is the union of countably many nowhere dense sets. Given sets
and
in
, we say that
iff their symmetric difference
is meager. For example, the Cantor set is nowhere dense.
Show that is an equivalence relation.
Show that if is meager, then any subset of
is also meager. Show that the union of countably many meager sets is again meager.
Show that the Baire category theorem implies that any nonempty open subset of is non-meager.
Show that if is open, or closed, or a
set, or a
set (a countable union of closed sets), then there is an open set
such that
.
- The Cantor-Bendixson derivative of a closed set
is defined by
Since is closed,
. We can iterate this operation, and form
,
Note we have
We can go even further, by letting and then continuing, by setting
, etc.
Give examples of closed subsets of
such that
but
, or
but
, or
or
but
. Can
be the first empty “derivative”? How about
?
- Check that if
and
are compact, then so is
as a subset of
.
- Show that if
is a subset of
that is both open and closed, and
, then it must be the case that
.