Here are some extra credit problems dealing with the notion of compactness. The deadline to turn them in is Wednesday, December 14, at noon. I will not post hints for now, but feel free to stop by my office as you work on the problems, if you want to double check how your approach is going, and we may discuss suggestions then. These results are proved in different sources, try not to look these solutions up.

(Vitali’s covering lemma)

Suppose that is a metric space and is compact. Let be an open covering of . Show that there is a finite set such that the balls for are pairwise disjoint, and

If , can the constant be improved? (I.e., can it be replaced by a smaller number?) If so, can you find the optimal constant?

This is a result of Krantz and Parsons. Again, let be a metric space. A self-centered covering of a non-empty subset is a collection of open balls, with open ball centered at each point of . An antisocial family is a collection of balls with the property that if and are distinct balls in the collection, then and . Prove the following:

Suppose that is a self-centered covering of the compact set , and suppose that the function is continuous on . Then there is an antisocial family that covers .

Also, show that any such family must be finite. Can you find a “reasonable” assumption on the map , not as restrictive as continuity, but sufficient to ensure the result?

(By the way, the topic of covering theorems is very interesting. Let me know if you think you may want to explore this further.)

This entry was posted on Sunday, October 9th, 2011 at 7:17 pm and is filed under 414/514: Analysis I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.