The argument in today’s lecture depended at the end on the following fact:

Suppose that is an uncountable subset of Then admits a limit point. In fact, if , then admits a limit point with

The proof should be standard by now but, for completeness, here is one way of seeing this:

Before we begin, recall that we already know that a bounded infinite set has a limit point. So, either is unbounded, or else it has a limit point. But even if we know that , so it certainly is bounded, we are not quite done yet because the limit point could be or

Recall as well that the countable union of countable sets is countable.

First, we may assume is bounded. This is because

,

so for some we must have is uncountable so, even if is unbounded, we can replace it with the uncountable bounded set

Let or, if we are given that to begin with, let So we can assume . Write so we do not have to distinguish between both cases. For , let

Then , and it follows that for some we must have is uncountable.

Now, we know that any infinite bounded subset of the reals has a limit point, so has a limit point. This point in absolute value has size at most , but this is what we needed.

In fact, one can extend this argument to see that any uncountable set has an uncountable set of limit points, but we did not need this for today’s argument.

Added: You may find interesting this recent question in MathOverflow.

This entry was posted on Friday, October 28th, 2011 at 12:01 pm and is filed under 414/514: Analysis I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Marginalia to a theorem of Silver (see also this link) by Keith I. Devlin and R. B. Jensen, 1975. A humble title and yet, undoubtedly, one of the most important papers of all time in set theory.

Given a positive integer $a$, the Ramsey number $R(a)$ is the least $n$ such that whenever the edges of the complete graph $K_n$ are colored using only two colors, we necessarily have a copy of $K_a$ with all its edges of the same color. For example, $R(3)= 6$, which is usually stated by saying that in a party of 6 people, necessarily there are 3 that know e […]

No, this is not consistent. Todorčević has shown in ZF that, in fact, there is no function $F\!:\mathcal W(S)\to S$ with the property you require. Here, $\mathcal W(S)$ is the collection of subsets of $S$ that are well-orderable. This is corollary 6 in MR0793235 (87d:03126). Todorčević, Stevo. Partition relations for partially ordered sets. Acta Math. 155 (1 […]

As suggested by Gerald, the notion was first introduced for groups. Given a directed system of groups, their direct limit was defined as a quotient of their direct product (which was referred to as their "weak product"). The general notion is a clear generalization, although the original reference only deals with groups. As mentioned by Cameron Zwa […]

A database of number fields, by Jürgen Klüners and Gunter Malle. (Note this is not the same as the one mentioned in this answer.) The site also provides links to similar databases.

Let me add something to Noah's nice answer. If there are transitive set models of set theory, then there are such models of $V=L$, and therefore there is a countable $\alpha$ such that $L_\alpha$ is a model (by the Löwenheim–Skolem theorem and condensation). Since $L_\alpha$ is countable, for any forcing poset $\mathbb P\in L_\alpha$ there are (in $L$) […]

The answer depends on the underlying set theory and the actual symbol under consideration, whether $\in$ or $\subseteq$. In standard (ZF) set theory, the axiom of foundation prevents the existence of any set as specified. The reason is that sets have a rank, and the rank of any member of a set $A$ is strictly smaller than that of $A$. However, the rank of po […]

Sure. A large class of examples comes from the partition calculus. A simple result of the kind I have in mind is the following: Any infinite graph contains either a copy of the complete graph on countably many vertices or of the independent graph on countably many vertices. However, if we want to find an uncountable complete or independent graph, it is not e […]

I think that, from a modern point of view, there is a misunderstanding in the position that you suggest in your question. Really, "set theory" should be understood as an umbrella term that covers a whole hierarchy of ZFC-related theories. Perhaps one of the most significant advances in foundations is the identification of the consistency strength h […]

I'll only discuss the first question. As pointed out by Asaf, the argument is not correct, but something interesting can be said anyway. There are a couple of issues. A key problem is with the idea of an "explicitly constructed" set. Indeed, for instance, there are explicitly constructed sets of reals that are uncountable and of size continuum […]