For ease, I re-list here all the presentations we had throughout the term. I also include some of them. If you gave a presentation and would like your notes to be included, please email them to me and I’ll add them here.

Jeremy Elison, Wednesday, October 12: Georg Cantor and infinity.

Kevin Byrne, Wednesday, October 26: Alan Turing and Turing machines.

Keith Ward, Monday, November 7: Grigori Perelman and the Poincaré conjecture.

David Miller, Wednesday, November 16: Augustin Cauchy and Cauchy’s dispersion equation.

Taylor Mitchell, Friday, November 18: Lajos Pósa and Hamiltonian circuits.

Sheryl Tremble, Monday, November 28: Pythagoras and the Pythagorean theorem.

Blake Dietz, Wednesday, November 30: and the Happy End problem.

Here are Jeremy’s notes on his presentation. Here is the Wikipedia page on Cantor, and a link to Cantor’s Attic, a wiki-style page discussing the different (set theoretic) notions of infinity.

Here are a link to the official page for the Alan Turing year, and the Wikipedia page on Turing. If you have heard of Conway’s Game of Life, you may enjoy the following video showing how to simulate a Turing machine within the Game of Life; the Droste effect it refers to is best explained in by H. Lenstra in a talk given at Princeton on April 3, 2007, and available here.

Here is a link to the Wikipedia page on Perelman, and the Clay Institute’s description of the Poincaré conjecture. In 2006, The New Yorker published an interesting article on the unfortunate “controversy” on the priority of Perelman’s proof.

Here are David’s slides on his presentation, and the Wikipedia page on Cauchy.

Here is a link to Ross Honsberger’s article on Pósa (including the result on Hamiltonian circuits that Taylor showed during her presentation).

Here are Sheryl’s slides on Pythagoras and his theorem. In case the gif file does not play, here is a separate copy:

The Pythagorean theorem has many proofs, even one discovered by President Garfield!

Finally, here is the Wikipedia page on . Oakland University has a nice page on him, including information on the number; see also the page maintained by Peter Komjáth, and an online depository of most of papers.

This entry was posted on Tuesday, January 10th, 2012 at 5:26 pm and is filed under 187: Discrete mathematics. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

This is a very interesting question (and I really want to see what other answers you receive). I do not know of any general metatheorems ensuring that what you ask (in particular, about consistency strength) is the case, at least under reasonable conditions. However, arguments establishing the proof theoretic ordinal of a theory $T$ usually entail this. You […]

This is false; take a look at https://en.wikipedia.org/wiki/Analytic_set for a quick introduction. For details, look at Kechris's book on Classical Descriptive Set Theory. There you will find also some information on the history of this result, how it was originally thought to be true, and how the discovery of counterexamples led to the creation of desc […]

This is open. In $L(\mathbb R)$ the answer is yes. Hugh has several proofs of this, and it remains one of the few unpublished results in the area. The latest version of the statement (that I know of) is the claim in your parenthetical remark at the end. This gives determinacy in $L(\mathbb R)$ using, for example, a reflection argument. (I mentioned this a wh […]

A classical reference is Hypothèse du Continu by Waclaw Sierpiński (1934), available through the Virtual Library of Science as part of the series Mathematical Monographs of the Institute of Mathematics of the Polish Academy of Sciences. Sierpiński discusses equivalences and consequences. The statements covered include examples from set theory, combinatorics, […]

There is a new journal of the European Mathematical Society that seems perfect for these articles: EMS Surveys in Mathematical Sciences. The description at the link reads: The EMS Surveys in Mathematical Sciences is dedicated to publishing authoritative surveys and high-level expositions in all areas of mathematical sciences. It is a peer-reviewed periodical […]

You may be interested in the following paper: Lorenz Halbeisen, and Norbert Hungerbühler. The cardinality of Hamel bases of Banach spaces, East-West Journal of Mathematics, 2, (2000) 153-159. There, Lorenz and Norbert prove a few results about the size of Hamel bases of arbitrary infinite dimensional Banach spaces. In particular, they show: Lemma 3.4. If $K\ […]

You just need to show that $\sum_{\alpha\in F}\alpha^k=0$ for $k=0,1,\dots,q-2$. This is clear for $k=0$ (understanding $0^0$ as $1$). But $\alpha^q-\alpha=0$ for all $\alpha$ so $\alpha^{q-1}-1=0$ for all $\alpha\ne0$, and the result follows from the Newton identities.

Nice question. Let me first point out that the Riemann Hypothesis and $\mathsf{P}$-vs-$\mathsf{NP}$ are much simpler than $\Pi^1_2$: The former is $\Pi^0_1$, see this MO question, and the assertion that $\mathsf{P}=\mathsf{NP}$ is a $\Pi^0_2$ statement ("for every code for a machine of such and such kind there is a code for a machine of such other kind […]

For brevity's sake, say that a theory $T$ is nice if $T$ is a consistent theory that can interpret Peano Arithmetic and admits a recursively enumerable set of axioms. For any such $T$, the statement "$T$ is consistent" can be coded as an arithmetic statement (saying that no number codes a proof of a contradiction from the axioms of $T$). What […]