For ease, I re-list here all the presentations we had throughout the term. I also include some of them. If you gave a presentation and would like your notes to be included, please email them to me and I’ll add them here.

Jeremy Elison, Wednesday, October 12: Georg Cantor and infinity.

Kevin Byrne, Wednesday, October 26: Alan Turing and Turing machines.

Keith Ward, Monday, November 7: Grigori Perelman and the Poincaré conjecture.

David Miller, Wednesday, November 16: Augustin Cauchy and Cauchy’s dispersion equation.

Taylor Mitchell, Friday, November 18: Lajos Pósa and Hamiltonian circuits.

Sheryl Tremble, Monday, November 28: Pythagoras and the Pythagorean theorem.

Blake Dietz, Wednesday, November 30: and the Happy End problem.

Here are Jeremy’s notes on his presentation. Here is the Wikipedia page on Cantor, and a link to Cantor’s Attic, a wiki-style page discussing the different (set theoretic) notions of infinity.

Here are a link to the official page for the Alan Turing year, and the Wikipedia page on Turing. If you have heard of Conway’s Game of Life, you may enjoy the following video showing how to simulate a Turing machine within the Game of Life; the Droste effect it refers to is best explained in by H. Lenstra in a talk given at Princeton on April 3, 2007, and available here.

Here is a link to the Wikipedia page on Perelman, and the Clay Institute’s description of the Poincaré conjecture. In 2006, The New Yorker published an interesting article on the unfortunate “controversy” on the priority of Perelman’s proof.

Here are David’s slides on his presentation, and the Wikipedia page on Cauchy.

Here is a link to Ross Honsberger’s article on Pósa (including the result on Hamiltonian circuits that Taylor showed during her presentation).

Here are Sheryl’s slides on Pythagoras and his theorem. In case the gif file does not play, here is a separate copy:

The Pythagorean theorem has many proofs, even one discovered by President Garfield!

Finally, here is the Wikipedia page on . Oakland University has a nice page on him, including information on the number; see also the page maintained by Peter Komjáth, and an online depository of most of papers.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Tuesday, January 10th, 2012 at 5:26 pm and is filed under 187: Discrete mathematics. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

I am looking for references discussing two inequalities that come up in the study of the dynamics of Newton's method on real-valued polynomials (in one variable). The inequalities are fairly different, but it seems to make sense to ask about both of them in the same post. Most of the details below are fairly elementary, they are mostly included for comp […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

First of all, $f(z)+e^z\ne 0$ by the first inequality. It follows that $e^z/(f(z)+e^z)$ is entire, and bounded above. You should be able to conclude from that.

Yes. The standard way of defining these sequences goes by assigning in an explicit fashion to each limit ordinal $\alpha$, for as long as possible, an increasing sequence $\alpha_n$ that converges to $\alpha$. Once this is done, we can define $f_\alpha$ by diagonalizing, so $f_\alpha(n)=f_{\alpha_n}(n)$ for all $n$. Of course there are many possible choices […]

I disagree with the advice of sending a paper to a journal before searching the relevant literature. It is almost guaranteed that a paper on the fundamental theorem of algebra (a very classical and well-studied topic) will be rejected if you do not include mention on previous proofs, and comparisons, explaining how your proof differs from them, etc. It is no […]

No, the rank of a set $x$ is the least $\alpha$ such that $x\in V_{\alpha+1}$. Note that if $\alpha$ is limit, any $x\in V_\alpha$ belongs to some $V_\beta$ with $\beta