As mentioned in lecture, Hilbert’s third problem was an attempt to understand whether the Bolyai-Gerwien theorem could generalize to

3. THE EQUALITY OF THE VOLUMES OF TWO TETRAHEDRA OF EQUAL BASES AND EQUAL ALTITUDES.

In two letters to Gerling, Gauss expresses his regret that certain theorems of solid geometry depend upon the method of exhaustion, i.e., in modern phraseology, upon the axiom of continuity (or upon the axiom of Archimedes). Gauss mentions in particular the theorem of Euclid, that triangular pyramids of equal altitudes are to each other as their bases. Now the analogous problem in the plane has been solved. Gerling also succeeded in proving the equality of volume of symmetrical polyhedra by dividing them into congruent parts. Nevertheless, it seems to me probable that a general proof of this kind for the theorem of Euclid just mentioned is impossible, and it should be our task to give a rigorous proof of its impossibility. This would be obtained, as soon as we succeeded in specifying two tetrahedra of equal bases and equal altitudes which can in no way be split up into congruent tetrahedra, and which cannot be combined with congruent tetrahedra to form two polyhedra which themselves could be split up into congruent tetrahedra.

Hilbert’s student Max Dehn solved the problem in 1901 with the introduction of what we now call Dehn invariants:

Theorem. If two polyhedra in are equidecomposable into polyhedra, then they have the same volume and the same Dehn invariants.

In 1965, J.-P. Sydler proved the converse of Dehn’s result:

Theorem. Two polyhedra in with the same volume and the same Dehn invariants are equidecomposable into polyhedra.

A couple of years ago, Richard Schwartz, from Brown university, wrote a couple of very nice notes explaining both Dehn’s and Sydler’s theorems. He also developed a Java applet illustrating Sydler’s argument (for his “Fundamental lemma”). They can be downloaded here.

(The nicest presentation of the Bolyai-Gerwein result that I’ve found is in Howard Eves’ “A Survey of geometry“. The text of Hilbert’s original lecture delivered before the International Congress of Mathematicians at Paris in 1900 was expanded to a paper, “Mathematical problems”, Bull. Amer. Math. Soc. 8 (1902), 437–479. It has been recently (I’m old) reprinted, in Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 4, 407–436 and can be downloaded here.)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, January 23rd, 2012 at 1:32 pm and is filed under 515: Analysis II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Perhaps the following may clarify the comments: for any ordinal $\delta$, there is a Boolean-valued extension of the universe of sets where $2^{\aleph_0}>\aleph_\delta$ holds. If you rather talk of models than Boolean-valued extensions, what this says is that we can force while preserving all ordinals, and in fact all initial ordinals, and make the contin […]

I do not know of any active set theorists who think large cardinals are inconsistent. At least, within the realm of cardinals we have seriously studied. [Reinhardt suggested an ultimate axiom of the form "there is a non-trivial elementary embedding $j:V\to V$". Though some serious set theorists found it of possible interest immediately following it […]

There is a fantastic (and not too well-known) result of Shelah stating that $L({\mathcal P}(\lambda))$ is a model of choice whenever $\lambda$ is a singular strong limit of uncountable cofinality. This is a consequence of a more general theorem that can be found in 4.6/6.7 of "Set Theory without choice: not everything on cofinality is possible", Ar […]

In set theory, definitely the notion of a Woodin cardinal. First, it is not an entirely straightforward notion to guess. Significant large cardinals were up to that point defined as critical points of certain elementary embeddings. This is not the case here: Woodin cardinals need not be measurable. If $\kappa$ is Woodin, then $V_\kappa$ is a model of set the […]

The first example that came to mind was MR0270881 (42 #5764) van der Waerden, B. L. How the proof of Baudet's conjecture was found. 1971 Studies in Pure Mathematics (Presented to Richard Rado) pp. 251–260 Academic Press, London. There, van der Waerden describes some of the history as well as his proof of his well-known theorem. Another example: MR224589 […]

Update: The problem has been solved. See below for the original answer, with the state of the art in 2013. In 2017, Ł. Grabowski, A. Máthé and O. Pikhurko showed in Measurable circle squaring, Ann. of Math. (2) 185 (2017), no. 2, 671–710, MR3612006, that Tarski's problem can be solved using pieces that are both Lebesgue and Baire measurable. Their proof […]

The condition $\kappa\to(\kappa)^2_2$ is quite significant: Any such $\kappa$ larger than $\aleph_0$ is a weakly compact cardinal. These are strongly inaccessible cardinals that are a limit of strongly inaccessible cardinals. In fact, they are a Mahlo limit of Mahlo cardinals, and much more. Weak compactness is a natural rung in the large cardinal ladder. As […]

Yes, it is consistent to have such cardinals. In fact, it is consistent relative to an inaccessible cardinal that $\omega\to(\omega)^\omega_2$. This is a famous result of Mathias, in MR0491197 (58 #10462). Mathias, A. R. D. Happy families. Ann. Math. Logic 12 (1977), no. 1, 59–111. (It is still open whether the inaccessible cardinal is required.) The result […]

The inductive definition of forcing (by complexity of formulas) gives in particular that $p$ forces $\lnot\psi$ if and only if no extension of $p$ forces $\psi$. That is exactly what is being claimed. As for why this general fact about forcing of negations holds, it is either immediate from the fact that a statement holds in a generic extension if and only i […]

The principle $\lozenge$ (diamond) is in a sense the right set-theoretic version of the continuum hypothesis, as it presents it instead as a reflection principle. Formally, it asserts that there is a diamond sequence, that is, a sequence $(A_\alpha:\alpha