As mentioned in lecture, Hilbert’s third problem was an attempt to understand whether the Bolyai-Gerwien theorem could generalize to

3. THE EQUALITY OF THE VOLUMES OF TWO TETRAHEDRA OF EQUAL BASES AND EQUAL ALTITUDES.

In two letters to Gerling, Gauss expresses his regret that certain theorems of solid geometry depend upon the method of exhaustion, i.e., in modern phraseology, upon the axiom of continuity (or upon the axiom of Archimedes). Gauss mentions in particular the theorem of Euclid, that triangular pyramids of equal altitudes are to each other as their bases. Now the analogous problem in the plane has been solved. Gerling also succeeded in proving the equality of volume of symmetrical polyhedra by dividing them into congruent parts. Nevertheless, it seems to me probable that a general proof of this kind for the theorem of Euclid just mentioned is impossible, and it should be our task to give a rigorous proof of its impossibility. This would be obtained, as soon as we succeeded in specifying two tetrahedra of equal bases and equal altitudes which can in no way be split up into congruent tetrahedra, and which cannot be combined with congruent tetrahedra to form two polyhedra which themselves could be split up into congruent tetrahedra.

Hilbert’s student Max Dehn solved the problem in 1901 with the introduction of what we now call Dehn invariants:

Theorem. If two polyhedra in are equidecomposable into polyhedra, then they have the same volume and the same Dehn invariants.

In 1965, J.-P. Sydler proved the converse of Dehn’s result:

Theorem. Two polyhedra in with the same volume and the same Dehn invariants are equidecomposable into polyhedra.

A couple of years ago, Richard Schwartz, from Brown university, wrote a couple of very nice notes explaining both Dehn’s and Sydler’s theorems. He also developed a Java applet illustrating Sydler’s argument (for his “Fundamental lemma”). They can be downloaded here.

(The nicest presentation of the Bolyai-Gerwein result that I’ve found is in Howard Eves’ “A Survey of geometry“. The text of Hilbert’s original lecture delivered before the International Congress of Mathematicians at Paris in 1900 was expanded to a paper, “Mathematical problems”, Bull. Amer. Math. Soc. 8 (1902), 437–479. It has been recently (I’m old) reprinted, in Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 4, 407–436 and can be downloaded here.)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, January 23rd, 2012 at 1:32 pm and is filed under 515: Analysis II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

I am looking for references discussing two inequalities that come up in the study of the dynamics of Newton's method on real-valued polynomials (in one variable). The inequalities are fairly different, but it seems to make sense to ask about both of them in the same post. Most of the details below are fairly elementary, they are mostly included for comp […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

First of all, $f(z)+e^z\ne 0$ by the first inequality. It follows that $e^z/(f(z)+e^z)$ is entire, and bounded above. You should be able to conclude from that.

Yes. The standard way of defining these sequences goes by assigning in an explicit fashion to each limit ordinal $\alpha$, for as long as possible, an increasing sequence $\alpha_n$ that converges to $\alpha$. Once this is done, we can define $f_\alpha$ by diagonalizing, so $f_\alpha(n)=f_{\alpha_n}(n)$ for all $n$. Of course there are many possible choices […]

I disagree with the advice of sending a paper to a journal before searching the relevant literature. It is almost guaranteed that a paper on the fundamental theorem of algebra (a very classical and well-studied topic) will be rejected if you do not include mention on previous proofs, and comparisons, explaining how your proof differs from them, etc. It is no […]

No, the rank of a set $x$ is the least $\alpha$ such that $x\in V_{\alpha+1}$. Note that if $\alpha$ is limit, any $x\in V_\alpha$ belongs to some $V_\beta$ with $\beta