As mentioned in lecture, Hilbert’s third problem was an attempt to understand whether the Bolyai-Gerwien theorem could generalize to

3. THE EQUALITY OF THE VOLUMES OF TWO TETRAHEDRA OF EQUAL BASES AND EQUAL ALTITUDES.

In two letters to Gerling, Gauss expresses his regret that certain theorems of solid geometry depend upon the method of exhaustion, i.e., in modern phraseology, upon the axiom of continuity (or upon the axiom of Archimedes). Gauss mentions in particular the theorem of Euclid, that triangular pyramids of equal altitudes are to each other as their bases. Now the analogous problem in the plane has been solved. Gerling also succeeded in proving the equality of volume of symmetrical polyhedra by dividing them into congruent parts. Nevertheless, it seems to me probable that a general proof of this kind for the theorem of Euclid just mentioned is impossible, and it should be our task to give a rigorous proof of its impossibility. This would be obtained, as soon as we succeeded in specifying two tetrahedra of equal bases and equal altitudes which can in no way be split up into congruent tetrahedra, and which cannot be combined with congruent tetrahedra to form two polyhedra which themselves could be split up into congruent tetrahedra.

Hilbert’s student Max Dehn solved the problem in 1901 with the introduction of what we now call Dehn invariants:

Theorem. If two polyhedra in are equidecomposable into polyhedra, then they have the same volume and the same Dehn invariants.

In 1965, J.-P. Sydler proved the converse of Dehn’s result:

Theorem. Two polyhedra in with the same volume and the same Dehn invariants are equidecomposable into polyhedra.

A couple of years ago, Richard Schwartz, from Brown university, wrote a couple of very nice notes explaining both Dehn’s and Sydler’s theorems. He also developed a Java applet illustrating Sydler’s argument (for his “Fundamental lemma”). They can be downloaded here.

(The nicest presentation of the Bolyai-Gerwein result that I’ve found is in Howard Eves’ “A Survey of geometry“. The text of Hilbert’s original lecture delivered before the International Congress of Mathematicians at Paris in 1900 was expanded to a paper, “Mathematical problems”, Bull. Amer. Math. Soc. 8 (1902), 437–479. It has been recently (I’m old) reprinted, in Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 4, 407–436 and can be downloaded here.)

This entry was posted on Monday, January 23rd, 2012 at 1:32 pm and is filed under 515: Analysis II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Consider a subset $\Omega$ of $\mathbb R$ of size $\aleph_1$ and ordered in type $\omega_1$. (This uses the axiom of choice.) Let $\mathcal F$ be the $\sigma$-algebra generated by the initial segments of $\Omega$ under the well-ordering (so all sets in $\mathcal F$ are countable or co-countable), with the measure that assigns $0$ to the countable sets and $1 […]

You assume $\omega_\alpha\subseteq M$ and $X\in M$ so that $X$ belongs to the transitive collapse of $M$ (because if $\pi$ is the collapsing map, $\pi(X)=\pi[X]=X$. You assume $|M|=\aleph_\alpha$ so that the transitive collapse of $M$ has size $\aleph_\alpha$. Since you also have that this transitive collapse is of the form $L_\beta$ for some $\beta$, it fol […]

Perhaps the following may clarify the comments: for any ordinal $\delta$, there is a Boolean-valued extension of the universe of sets where $2^{\aleph_0}>\aleph_\delta$ holds. If you rather talk of models than Boolean-valued extensions, what this says is that we can force while preserving all ordinals, and in fact all initial ordinals, and make the contin […]

I do not know of any active set theorists who think large cardinals are inconsistent. At least, within the realm of cardinals we have seriously studied. [Reinhardt suggested an ultimate axiom of the form "there is a non-trivial elementary embedding $j:V\to V$". Though some serious set theorists found it of possible interest immediately following it […]

There is a fantastic (and not too well-known) result of Shelah stating that $L({\mathcal P}(\lambda))$ is a model of choice whenever $\lambda$ is a singular strong limit of uncountable cofinality. This is a consequence of a more general theorem that can be found in 4.6/6.7 of "Set Theory without choice: not everything on cofinality is possible", Ar […]

Let $B=\{n\mid \forall m\in A\,(n>m)\}$. That is, $B$ is the collection of natural numbers that are larger than all elements of $A$. If $A$ is infinite, $B$ is empty. If $A$ is finite, $B$ is not only infinite, but in fact it is a tail of the natural numbers; more precisely, it is the set of all natural numbers strictly larger than the maximum of $A$.

The standard notation in logic would be $\exists^\infty$. The exclamation mark ! is used to indicate uniqueness, $\exists^{!n} x\,\phi(x)$ being "there are exactly $n$ distinct elements $x$ such that $\phi(x)$". So, the standard reading of $\exists^{!\infty}x\,\phi(x)$ would be "there are exactly infinitely many $x$ such that..." which is […]

Take $a_n=p$, where $p$ is the smallest prime dividing $n$. If a subsequence converges, it converges to a prime $p$, in which case except for finitely many initial terms, the sequence is eventually constant with value $p$. But the number of initial terms is arbitrary.

The precise consistency strength of the global failure of the generalized continuum hypothesis is somewhat technical to state. As far as I know, it has not been published, but I think we have a decent understanding of what the correct statement should be. The most relevant paper towards this result is MR2224051 (2007d:03082). Gitik, Moti Merimovich, Carmi. P […]

There are integrable functions that are not derivatives: Any function that is continuous except at a single point, where it has a jump discontinuity, is an example. (Derivatives have the intermediate value property.) More interestingly, we can ask whether the existence of an antiderivative ensures integrability. The answer depends on what integral you are co […]