As mentioned in lecture, Hilbert’s third problem was an attempt to understand whether the Bolyai-Gerwien theorem could generalize to

3. THE EQUALITY OF THE VOLUMES OF TWO TETRAHEDRA OF EQUAL BASES AND EQUAL ALTITUDES.

In two letters to Gerling, Gauss expresses his regret that certain theorems of solid geometry depend upon the method of exhaustion, i.e., in modern phraseology, upon the axiom of continuity (or upon the axiom of Archimedes). Gauss mentions in particular the theorem of Euclid, that triangular pyramids of equal altitudes are to each other as their bases. Now the analogous problem in the plane has been solved. Gerling also succeeded in proving the equality of volume of symmetrical polyhedra by dividing them into congruent parts. Nevertheless, it seems to me probable that a general proof of this kind for the theorem of Euclid just mentioned is impossible, and it should be our task to give a rigorous proof of its impossibility. This would be obtained, as soon as we succeeded in specifying two tetrahedra of equal bases and equal altitudes which can in no way be split up into congruent tetrahedra, and which cannot be combined with congruent tetrahedra to form two polyhedra which themselves could be split up into congruent tetrahedra.

Hilbert’s student Max Dehn solved the problem in 1901 with the introduction of what we now call Dehn invariants:

Theorem. If two polyhedra in are equidecomposable into polyhedra, then they have the same volume and the same Dehn invariants.

In 1965, J.-P. Sydler proved the converse of Dehn’s result:

Theorem. Two polyhedra in with the same volume and the same Dehn invariants are equidecomposable into polyhedra.

A couple of years ago, Richard Schwartz, from Brown university, wrote a couple of very nice notes explaining both Dehn’s and Sydler’s theorems. He also developed a Java applet illustrating Sydler’s argument (for his “Fundamental lemma”). They can be downloaded here.

(The nicest presentation of the Bolyai-Gerwein result that I’ve found is in Howard Eves’ “A Survey of geometry“. The text of Hilbert’s original lecture delivered before the International Congress of Mathematicians at Paris in 1900 was expanded to a paper, “Mathematical problems”, Bull. Amer. Math. Soc. 8 (1902), 437–479. It has been recently (I’m old) reprinted, in Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 4, 407–436 and can be downloaded here.)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, January 23rd, 2012 at 1:32 pm and is filed under 515: Analysis II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

I feel this question may be a duplicate, because I am pretty certain I first saw the paper I mention below in an answer here. You may be interested in reading the following: MR2141502 (2006c:68092) Reviewed. Calude, Cristian S.(NZ-AUCK-C); Jürgensen, Helmut(3-WON-C). Is complexity a source of incompleteness? (English summary), Adv. in Appl. Math. 35 (2005), […]

The smallest such ordinal is $0$ because you defined your rank (height) inappropriately (only successor ordinals are possible). You want to define the rank of a node without successors as $0$, and of a node $a$ with successors as the supremum of the set $\{\alpha+1\mid\alpha$ is the rank of an immediate successor of $a\}$. With this modification, the smalles […]

The perfect reference for this is MR2562557 (2010j:03061) Reviewed. Steel, J. R.(1-CA). The derived model theorem. In Logic Colloquium 2006. Proceedings of Annual European Conference on Logic of the Association for Symbolic Logic held at the Radboud University, Nijmegen, July 27–August 2, 2006, S. B. Cooper, H. Geuvers, A. Pillay and J. Väänänen, eds., Lectu […]

Consider $A=\{(x,y)\in\mathbb R^2\mid x\notin L[y]\}$. Check that this set is $\Pi^1_2$ (this is similar to the proof that there is a $\Delta^1_2$ well-ordering in $L$). The point is that $A$ does not admit a projective uniformization. It does not really matter that the number of Cohen reals you added is $\aleph_2$; any uncountable number would work. The rea […]