The above is the letter presenting the resignation of the editorial board of Topology, an Elsevier journal. The journal has been discontinued as of this year.

[…] As you are well aware, the Editors have been concerned about the price of Topology since Elsevier gained control of the journal in 1994. […] The journal Topology has an illustrious history with which we, on becoming editors, were extremely proud to be associated. […] However, we feel that Elsevier’s policies towards the publication of mathematics research have undermined this legacy.

Therefore, with great reluctance and sadness, we have made the difficult decision to resign. […]

On Google+, David Roberts gave a link to the journal’s site, with some highlights: As you can see here, the last published issue (vol. 48, 2-4) was June-December 2009. The previous issue was 40 pages and consisted of 2 papers (that you can purchase access to, at $31.50 each. Plus tax.) And there is also a supplement, published on December 2011. Only $31.50 (plus tax) for a 4 page correction.

This entry was posted on Tuesday, January 24th, 2012 at 6:15 pm and is filed under Letters. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

I am looking for references discussing two inequalities that come up in the study of the dynamics of Newton's method on real-valued polynomials (in one variable). The inequalities are fairly different, but it seems to make sense to ask about both of them in the same post. Most of the details below are fairly elementary, they are mostly included for comp […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Not necessarily. That $\mathfrak m$ is consistently singular is proved in MR0947850 (89m:03045) Kunen, Kenneth. Where $\mathsf{MA}$ first fails. J. Symbolic Logic 53(2), (1988), 429–433. There, Ken shows that $\mathfrak{m}$ can be singular of cofinality $\omega_1$. (Both links above are behind paywalls.)

Ignas: It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here. […]

The real numbers are the usual thing. Surreal numbers are not real numbers, so no, they are not an example of non-constructible reals. Any real $r$ can be written as an infinite sequence $(n;d_1,d_2,\dots)$ where $n$ in an integer and the $d_i$ are digits. Whether the real is rational, constructible or not, is irrelevant. Any rational number, in fact, any al […]

Following Tomas's suggestion, I am posting this as an answer: I encountered this problem while directing a Master's thesis two years ago, and again (in a different setting) with another thesis last year. I seem to recall that I somehow got to this while reading slides of a talk by Paul Pollack. Anyway, I like to deduce the results asked in the prob […]

This is a beautiful and truly fundamental result, and so there are several good quality presentations. Try MR1321144. Kanamori, Akihiro. The higher infinite. Large cardinals in set theory from their beginnings. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1994. xxiv+536 pp. ISBN: 3-540-57071-3, or any of the newer editions (the 2003 second ed […]

Given any field automorphism of $\mathbb C$, the rational numbers are fixed. In fact, any number that is explicitly definable in $\mathbb C$ (in the first order language of fields) is fixed. (Actually, this means that we can only ensure that the rationals are fixed, I expand on this below.) Any construction of a wild automorphism uses the axiom of choice. Se […]

RT @QuantaMagazine: Just in: László Babai says he fixed the error, renewing his claim that his algorithm runs in quasi-polynomial time.” ht… 1 week ago

[…] E. Caicedo: A letter (on the resignation of the editorial board of […]