The above is the letter presenting the resignation of the editorial board of Topology, an Elsevier journal. The journal has been discontinued as of this year.

[…] As you are well aware, the Editors have been concerned about the price of Topology since Elsevier gained control of the journal in 1994. […] The journal Topology has an illustrious history with which we, on becoming editors, were extremely proud to be associated. […] However, we feel that Elsevier’s policies towards the publication of mathematics research have undermined this legacy.

Therefore, with great reluctance and sadness, we have made the difficult decision to resign. […]

On Google+, David Roberts gave a link to the journal’s site, with some highlights: As you can see here, the last published issue (vol. 48, 2-4) was June-December 2009. The previous issue was 40 pages and consisted of 2 papers (that you can purchase access to, at $31.50 each. Plus tax.) And there is also a supplement, published on December 2011. Only $31.50 (plus tax) for a 4 page correction.

This entry was posted on Tuesday, January 24th, 2012 at 6:15 pm and is filed under Letters. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Georgii: Let me start with some brief remarks. In a series of three papers: a. Wacław Sierpiński, "Contribution à la théorie des séries divergentes", Comp. Rend. Soc. Sci. Varsovie 3 (1910) 89–93 (in Polish). b. Wacław Sierpiński, "Remarque sur la théorème de Riemann relatif aux séries semi-convergentes", Prac. Mat. Fiz. XXI (1910) 17–20 […]

What precisely do you mean by a standard model? An $\omega$-model? (That is, a model whose set of natural numbers is isomorphic to $\omega$.) Or a $\beta$-model? (That is, a model whose ordinals are well-ordered.) If the latter, the Mostowski collapse theorem tells us any such model is isomorphic in a unique way to a unique transitive model. If the former, t […]

This is Theorem 39 in the paper (see Theorem 4.(i) for a user-friendly preview). But the fact that $(2^\kappa)^+\to(\kappa^+)^2_\kappa$ is older (1946) and due to Erdős, see here: Paul Erdős. Some set-theoretical properties of graphs, Univ. Nac. Tucumán. Revista A. 3 (1942), 363-367 MR5,151d. (Anyway, it is probably easier to read a more modern presentation, […]

This is a nice problem. Here is what I know. (Below, I refer to the Handbook. This is the Handbook of Set Theory, Foreman, Kanamori, eds., Springer, 2010.) First of all, the consistency of the failure of diamond at a weakly compact cardinal seems open. Woodin has asked this explicitly, I do not know if the question itself is due to him. Of course, $\diamonds […]

I thought about this question a while ago, while teaching a topics course. Since one can easily check that $${}|{\mathbb R}|=|{\mathcal P}({\mathbb N})|$$ by a direct construction that does not involve diagonalization, the question can be restated as: Is there a proof of Cantor's theorem that ${}|X|

An example I like is this: Say two sets of natural numbers are almost disjoint iff they are infinite but their intersection is finite. Suppose $\mathcal F$ is an uncountable family of almost disjoint sets. Then the collection of characteristic functions of the sets in $\mathcal F$ is an example. (If $A$ is a subset of $\mathbb N$, then its characteristic fun […]

The set $\mathrm{Def}(X)$ consists of all subsets of $X$ first-order definable in the structure $(X,\in)$ from parameters. What matters here is that there are only countably many formulas, and only $|X^{

There is no slowest divergent series. Let me take this to mean that given any sequence $a_n$ of positive numbers converging to zero whose series diverges, there is a sequence $b_n$ that converges to zero faster and the series also diverges, where "faster" means that $\lim b_n/a_n=0$. In fact, given any sequences of positive numbers $(a_{1,n}), (a_{ […]

Yes. In fact, by a counting argument, most dense co-dense sets are neither $G_\delta$ nor $F_\sigma$. The point is that there are exactly as many $G_\delta$ or $F_\sigma$ as there are real numbers, but there are as many dense co-dense sets as there are sets of real numbers. In somewhat more detail: There are only countably many rationals, so there are counta […]

There are quite a few examples in analysis, typically through the use of transfinite induction or transfinite recursion of length $\omega_1$. The Baire-Cantor stationary principle states that if $C_0\supseteq C_1\supseteq C_2\supseteq\dots\supseteq C_\alpha\supseteq\dots$, $\alpha

[…] E. Caicedo: A letter (on the resignation of the editorial board of […]