This set is due Feb. 8 at the beginning of lecture. Of course, let me know if more time is needed or anything like that.

0. During lecture I have sometimes skipped some arguments or not given as much detail as you may have wanted. If there was a result that in particular required of you some effort to complete in detail, please state it here and show me how you filled in the gaps left in lecture. Also, if there is a result for which you do not see how to fill in the details, let me know as well, as I may have overlooked something and it may be worth going back over it in class.

1. Give an example of a bounded set for which

does not exist.

2. Compute .

3. From the book, solve exercises 1.1.3, 1.1.5, 1.1.6, and 1.1.15.

[To get you started on 1.1.3: First verify in that assigns value 0 to any point. For this, use monotonicity and translation invariance, arguing first that for any . Then find that in terms of , and use this to find for any box with rational coordinates. Use this to compute for any box, and conclude by analyzing arbitrary elementary sets.

Note we essentially solved 1.1.15 in class, but under the assumption that 1.1.6 holds.]

4. From the book, solve Exercises 1.1.7-10. Make sure to explain in 1.1.9 why Tao’s definition of compact convex polytopes coincides with what should be our intuitive definition. Please also verify that convex polytopes are indeed convex.

(For a nice argument verifying that indeed , at least for even values of , see the paper “On the volumes of balls” by Blass and Schanuel, available here.)

5. From the book, solve exercise 1.1.11.

(If you are not comfortable with linear algebra beyond size , at least argue in the plane and in .)

6. From the book, solve exercise 1.1.13.

7. From the book, solve exercise 1.1.17.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Wednesday, January 25th, 2012 at 1:08 pm and is filed under 515: Analysis II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

I learned of this problem through Su Gao, who heard of it years ago while a post-doc at Caltech. David Gale introduced this game in the 70s, I believe. I am only aware of two references in print: Richard K. Guy. Unsolved problems in combinatorial games. In Games of No Chance, (R. J. Nowakowski ed.) MSRI Publications 29, Cambridge University Press, 1996, pp. […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

The two concepts are different. For example, $\omega$, the first infinite ordinal, is the standard example of an inductive set according to the first definition, but is not inductive in the second sense. In fact, no set can be inductive in both senses (any such putative set would contain all ordinals). In the context of set theory, the usual use of the term […]

I will show that for any positive integers $n,\ell,k$ there is an $M$ so large that for all positive integers $i$, if $i/M\le \ell$, then the difference $$ \left(\frac iM\right)^n-\left(\frac{i-1}M\right)^n $$ is less than $1/k$. Let's prove this first, and then argue that the result follows from it. Note that $$ (i+1)^n-i^n=\sum_{k=0}^{n-1}\binom nk i^ […]

I think it is cleaner to argue without induction. If $n$ is a positive integer and $n\ge 8$, then $7n$ is both less than $n^2$ and a multiple of $n$, so at most $n^2-n$ and therefore $7n+1$ is at most $n^2-n+1

Let PRA be the theory of Primitive recursive arithmetic. This is a subtheory of PA, and it suffices to prove the incompleteness theorem. It is perhaps not the easiest theory to work with, but the point is that a proof of incompleteness can be carried out in a significantly weaker system than the theories to which incompleteness actually applies. It is someti […]

(I have added a missing prime in the hint on question 3.) Thanks to Tara for noticing it.