This set is due Feb. 8 at the beginning of lecture. Of course, let me know if more time is needed or anything like that.

0. During lecture I have sometimes skipped some arguments or not given as much detail as you may have wanted. If there was a result that in particular required of you some effort to complete in detail, please state it here and show me how you filled in the gaps left in lecture. Also, if there is a result for which you do not see how to fill in the details, let me know as well, as I may have overlooked something and it may be worth going back over it in class.

1. Give an example of a bounded set for which

does not exist.

2. Compute .

3. From the book, solve exercises 1.1.3, 1.1.5, 1.1.6, and 1.1.15.

[To get you started on 1.1.3: First verify in that assigns value 0 to any point. For this, use monotonicity and translation invariance, arguing first that for any . Then find that in terms of , and use this to find for any box with rational coordinates. Use this to compute for any box, and conclude by analyzing arbitrary elementary sets.

Note we essentially solved 1.1.15 in class, but under the assumption that 1.1.6 holds.]

4. From the book, solve Exercises 1.1.7-10. Make sure to explain in 1.1.9 why Tao’s definition of compact convex polytopes coincides with what should be our intuitive definition. Please also verify that convex polytopes are indeed convex.

(For a nice argument verifying that indeed , at least for even values of , see the paper “On the volumes of balls” by Blass and Schanuel, available here.)

5. From the book, solve exercise 1.1.11.

(If you are not comfortable with linear algebra beyond size , at least argue in the plane and in .)

6. From the book, solve exercise 1.1.13.

7. From the book, solve exercise 1.1.17.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Wednesday, January 25th, 2012 at 1:08 pm and is filed under 515: Analysis II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I thought about this question a while ago, while teaching a topics course. Since one can easily check that $${}|{\mathbb R}|=|{\mathcal P}({\mathbb N})|$$ by a direct construction that does not involve diagonalization, the question can be restated as: Is there a proof of Cantor's theorem that ${}|X|

First of all, note (as Monroe does in his question) that if $\mathbb P,\mathbb Q$ are ccc, then $\mathbb P\times\mathbb Q$ is $\mathfrak c^+$-cc, as an immediate consequence of the Erdős-Rado theorem $(2^{\aleph_0})^+\to(\aleph_1)^2_2$. (This is to say, if $\mathbb P$ and $\mathbb Q$ do not admit uncountable antichains, then any antichain in their product ha […]

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $$A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\},$$ and $\mathsf{ZFC}$ proves that $\phi$ and $\psi […]

A notion now considered standard of primitive recursive set function is introduced in MR0281602 (43 #7317). Jensen, Ronald B.; Karp, Carol. Primitive recursive set functions. In 1971 Axiomatic Set Thoory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) pp. 143–176 Amer. Math. Soc., Providence, R.I. The concept is use […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]

(I have added a missing prime in the hint on question 3.) Thanks to Tara for noticing it.