All blackboards are gone. They were replaced during the break. (So, no chance to use this MathOverflow question on the near future.) Makes me think of T.H. Huxley’s On a Piece of Chalk (see here) and wonder what the equivalent will be in a few decades.

On the plus side, we now have computers and projection equipment on each classroom. I am using this quite a bit in my abstract algebra class. Except that, during the first few weeks, it was more often than not that the keyboard would be locked away.

Annoyed, I called OIT and asked that they please make sure it was unlocked before my class. It worked for a few days. But then, again, I found it locked.

I called again (I was charming, I am sure). So, somebody came to the classroom, looked at me, smiled. And pressed a button, to open the drawer.

Sigh.

(In my defense, the class is at 8:30 in the morning, and I’m supposed to drink less coffee these days. But still.)

(“Thanks. I’m sorry. I’m an idiot.” “Oh, no, no. It is new.” “It is a button.”)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Sunday, February 19th, 2012 at 4:26 pm and is filed under Life. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Have you had a chance to use a tablet+projection to replace the whiteboard? Infinite paper with infinite zoom to add additional comments in the right place is a great tool I use for taking notes, but never had a chance to use in class.

(As I pointed out in a comment) yes, partial Woodinness is common in arguments in inner model theory. Accordingly, you obtain determinacy results addressing specific pointclasses (typically, well beyond projective). To illustrate this, let me "randomly" highlight two examples: See here for $\Sigma^1_2$-Woodin cardinals and, more generally, the noti […]

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]

"There are" examples of discontinuous homomorphisms between Banach algebras. However, the quotes are there because the question is independent of the usual axioms of set theory. I quote from the introduction to W. Hugh Woodin, "A discontinuous homomorphism from $C(X)$ without CH", J. London Math. Soc. (2) 48 (1993), no. 2, 299-315, MR1231 […]

This is Hausdorff's formula. Recall that $\tau^\lambda$ is the cardinality of the set ${}^\lambda\tau$ of functions $f\!:\lambda\to\tau$, and that $\kappa^+$ is regular for all $\kappa$. Now, there are two possibilities: If $\alpha\ge\tau$, then $2^\alpha\le\tau^\alpha\le(2^\alpha)^\alpha=2^\alpha$, so $\tau^\alpha=2^\alpha$. In particular, if $\alpha\g […]

Fix a model $M$ of a theory for which it makes sense to talk about $\omega$ ($M$ does not need to be a model of set theory, it could even be simply an ordered set with a minimum in which every element has an immediate successor and every element other than the minimum has an immediate predecessor; in this case we could identify $\omega^M$ with $M$ itself). W […]

The study of finite choice axioms is quite interesting. Besides the reference given in Asaf's answer, there are a few papers covering this topic in detail. If you can track it down, I suggest you read MR0360275 (50 #12725) Reviewed. Conway, J. H. Effective implications between the "finite'' choice axioms. In Cambridge Summer School in Mat […]

This is quite hilarious (I sympathize).

Have you had a chance to use a tablet+projection to replace the whiteboard? Infinite paper with infinite zoom to add additional comments in the right place is a great tool I use for taking notes, but never had a chance to use in class.

I haven’t, but I probably should. I’ve heard Hugh Woodin uses this quite effectively teaching precalculus, of all things.