This Fall I will be teaching Topics in set theory. The unofficial name of the course is Combinatorial Set Theory.

We will cover diverse topics in combinatorial set theory, depending on time and the interests of the audience, with emphasis on three topics: Choice-free combinatorics, cardinal arithmetic, and partition calculus (a generalization of Ramsey theory).

Time permitting, we can also cover large cardinals, determinacy and infinite games, or cardinal invariants (the study of sizes of sets of reals), among others. I’m open to suggestions for topics, so feel free to email me or to post a comment.

Pre-requisites: Permission by instructor. The recommended background is knowledge of cardinals and ordinals. A basic course on set theory (like 502: Logic and Set Theory) would be ideal but is not required.

Grading: Based on homework.

Textbook: Combinatorial set theory, by Neil H. Williams. Elsevier Science (1977). ISBN-10: 0720407222, ISBN-13: 978-0720407228. The book seems to be out of print.

We will also use:

Combinatorial Set Theory: Partition Relations for Cardinals, by Paul Erdös, András Hajnal, Attila Máté, and Richard Rado. Elsevier Science (1984). ISBN-10: 0444861572, ISBN-13: 978-0444861573. Apparently, this is also out of print.

I will distribute notes on the material of these books, on additional topics, and some papers that we will follow, particularly:

András Hajnal and Jean A. Larson. “Partition relations”, in Handbook of set theory, 129–213, Springer, 2010.

Jean A. Larson. “Infinite combinatorics”, in Handbook of the history of science, vol. 6, 145-357, Elsevier, 2012.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, March 5th, 2012 at 12:34 pm and is filed under 580: Topics in set theory. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

Please send an email to mathrev@ams.org, explaining the issue. (This is our all-purpose email address; any mistakes you discover, not just regarding references, you can let us know there.) Give us some time, I promise we'll get to it. However, if it seems as if the request somehow fell through the cracks, you can always contact one of your friendly edit […]

The characterization mentioned by Mohammad in his answer really dates back to Lev Bukovský in the early 70s, and, as Ralf and Fabiana recognize in their note, has nothing to do with $L$ or with reals (in their note, they indicate that after proving their result, they realized they had essentially rediscovered Bukovský's theorem). See MR0332477 (48 #1080 […]

I give an example (perhaps the best-known example) below, but let me first discuss equiconsistency rather than straight equivalence. Usually an equiconsistency is really the sort of result you are after anyway: You want to establish that certain statements in the universe where choice holds correspond to determinacy, which implies the failure of choice. The […]

The other answers have correctly identified the issue. Let me highlight the difficulty: it is relatively consistent with the axioms of set theory except for the axiom of choice that there are infinite sets which do not contain a copy of the natural numbers (that is, there are infinite sets $X$ such that there is no injection $f\!:\mathbb N\to X$). This means […]

This is $\aleph_\omega^{\aleph_0}$. First of all, this cardinal is an obvious upper bound. Second, if $A\subseteq\omega$ is infinite, $\prod_{i\in A}\aleph_i$ is clearly at least $\aleph_\omega$. The result follows, by splitting $\omega$ into countably many infinite sets. In general, the rules governing infinite products and exponentials are far from being w […]

If $\lambda$ and $\kappa$ are cardinals, $\lambda^\kappa$ represents the cardinality of the set of functions $f\!:A\to B$ where $A,B$ are fixed sets of cardinality $\kappa,\lambda$ respectively. (One needs to check this is independent of which specific sets $A,B$ we pick, of course.) At least for finite numbers, this is something you may have encountered in […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $$A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\},$$ and $\mathsf{ZFC}$ proves that $\phi$ and $\psi […]