515 – Caratheodory’s characterization of measurability (Homework 3)

This set is due Friday, April 27.

The goal of these problems is to prove Carathéodory‘s theorem that “extracts” a measure from any outer measure. In particular, when applied to Lebesgue outer measure, this construction recovers Lebesgue measure.

Recall that an outer measure on a set is a function such that:

.

implies .

For any subsets of , we have .

Given a set and an outer measure on , let denote the collection of subsets of with the property that

for all .

Prove that is a -algebra on .

This requires some work. You may want to proceed by stages:

First, check that is precisely the collection of sets such that, for any , we have

.

Check that , and that is closed under complements.

Check that is closed under finite unions. Conclude that it is also closed under set theoretic differences: If , then .

The crux of the matter, of course, is to verify that is closed under countable unions. Accordingly, suppose that for all , and let .

Let , and note that , where , and, recursively, for . (Note also that for all .)

Then, for , , and for all ,

Conclude that . (Why does this limit exist?)

Also, prove that . (Again, why does this limit exist?)

Conclude from these inequalities and item 1 that . This concludes the proof that is a -algebra.

Now let denote the restriction of to .

Prove that is a measure space.

In view of what we have proved already, note that this “reduces” to prove that, whenever are pairwise disjoint elements of , then

.

With notation as before, check first that for all , and conclude.

Prove that is in fact a complete measure. Recall that this means that any subset of a set of -measure 0 is measurable and also has measure 0. In fact, check that if , then , and conclude from this.

Suppose that . Show that the restriction of to is an outer measure on . Denote by resp. the set defined above, for resp. . Show that if , then . Suppose that is measurable (i.e., that ). Is ? If so, is this the only case where equality holds?

Prove that if is , Lebesgue outer measure on , then is precisely , Lebesgue measure on . (This may be a bit easier for than in general.)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, April 12th, 2012 at 2:15 pm and is filed under 515: Analysis II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

I assume by $\aleph$ you mean $\mathfrak c$, the cardinality of the continuum. You can build $D$ by transfinite recursion: Well-order the continuum in type $\mathfrak c$. At stage $\alpha$ you add a point of $A_\alpha$ to your set, and one to its complement. You can always do this because at each stage fewer than $\mathfrak c$ many points have been selected. […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is negative. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${\mathfrak c}$ (This doesn't matter, all we need is that it is strictly larger. T […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\}$, and $\mathsf{ZFC}$ proves that $\phi$ and $\psi$ […]

Yes, the suggested rearrangement converges to 0. This is a particular case of a result of Martin Ohm: For $p$ and $q$ positive integers rearrange the sequence $$\left(\frac{(−1)^{n-1}} n\right)_{n\ge 1} $$ by taking the ﬁrst $p$ positive terms, then the ﬁrst $q$ negative terms, then the next $p$ positive terms, then the next $q$ negative terms, and so on. Th […]

Yes, by the incompleteness theorem. An easy argument is to enumerate the sentences in the language of arithmetic. Assign to each node $\sigma $ of the tree $2^{

A simple example is the permutation $\pi$ given by $\pi(n)=n+2$ if $n$ is even, $\pi(1)=0$, and otherwise $\pi(n)=n−2$. It should be clear that $\pi$ is computable and has the desired property. By the way, regarding the footnote: if a bijection is computable, so is its inverse, so $\pi^{-1}$ is computable as well. In general, given a computable bijection $\s […]

The question is asking to find all polynomials $f$ for which you can find $a,b\in\mathbb R$ with $a\ne b$ such that the displayed identity holds. The concrete numbers $a,b$ may very well depend on $f$. A priori, it may be that for some $f$ there is only one pair for which the identity holds, it may be that for some $f$ there are many such pairs, and it may a […]