The 15th SLALM (Latin American Symposium in Mathematical Logic) was held in Bogotá, June 4-8, 2012. There were also three tutorials preceding the main event, on May 30-June 2. I give one of the tutorials, on Determinacy and Inner model theory, 10:40-12 each day, at the Universidad Nacional. Here is the abstract:

Since the invention of forcing, we know of many statements that are independent of the usual axioms of set theory, and even more that we know are consistent with the axioms (but we do not yet know whether they are actually provable).

These proofs of consistency typically make use of large cardinal assumptions. Inner model theory is the most powerful technique we have developed to analyze the structure of large cardinals. It also allows us to show that the use of large cardinals is in many cases indispensable. For years, the main tool in the development of this area was fine structure theory.

Determinacy (in suitable inner models) is a consequence of large cardinals, and recent work has revealed deep interconnections between determinacy assumptions and the existence of inner models with large cardinals, thus showing that descriptive set theory is also a key tool.

The development of these connections started in earnest with Woodin’s core model induction technique, and has led to what we now call Descriptive inner model theory.

The goal of the mini-course is to give a rough overview of these developments.

I have written a set of notes based on these talks, and will be making it available soon.

In addition, I gave one of the invited talks during the set theory session: Forcing with over models of strong versions of determinacy. Here is the abstract:

Hugh Woodin introduced , a definable poset, and showed that, when forcing with it over (in the presence of determinacy), one recovers choice, and obtains a model of many combinatorial assertions for which simultaneous consistency was not known by traditional forcing techniques. can be applied to larger models of determinacy. As part of joint work with Larson, Sargsyan, Schindler, Steel, and Zeman, we show how this allows us to calibrate the strength of different square principles.

This is of course related to the paper I discussed recently.

This entry was posted on Monday, May 21st, 2012 at 3:30 pm and is filed under Conferences. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

As suggested by Gerald, the notion was first introduced for groups. Given a directed system of groups, their direct limit was defined as a quotient of their direct product (which was referred to as their "weak product"). The general notion is a clear generalization, although the original reference only deals with groups. As mentioned by Cameron Zwa […]

A database of number fields, by Jürgen Klüners and Gunter Malle. (Note this is not the same as the one mentioned in this answer.) The site also provides links to similar databases.

As the other answer indicates, the yes answer to your question is known as the De Bruijn-Erdős theorem. This holds regardless of the size of the graph. The De Bruijn–Erdős theorem is a particular instance of what in combinatorics we call a compactness argument or Rado's selection principle, and its truth can be seen as a consequence of the topological c […]

Every $P_c$ has the size of the reals. For instance, suppose $\sum_n a_n=c$ and start by writing $\mathbb N=A\cup B$ where $\sum_{n\in A}a_n$ converges absolutely (to $a$, say). This is possible because $a_n\to 0$: Let $m_0

Consider a subset $\Omega$ of $\mathbb R$ of size $\aleph_1$ and ordered in type $\omega_1$. (This uses the axiom of choice.) Let $\mathcal F$ be the $\sigma$-algebra generated by the initial segments of $\Omega$ under the well-ordering (so all sets in $\mathcal F$ are countable or co-countable), with the measure that assigns $0$ to the countable sets and $1 […]

Sure. A large class of examples comes from the partition calculus. A simple result of the kind I have in mind is the following: Any infinite graph contains either a copy of the complete graph on countably many vertices or of the independent graph on countably many vertices. However, if we want to find an uncountable complete or independent graph, it is not e […]

I think that, from a modern point of view, there is a misunderstanding in the position that you suggest in your question. Really, "set theory" should be understood as an umbrella term that covers a whole hierarchy of ZFC-related theories. Perhaps one of the most significant advances in foundations is the identification of the consistency strength h […]

I'll only discuss the first question. As pointed out by Asaf, the argument is not correct, but something interesting can be said anyway. There are a couple of issues. A key problem is with the idea of an "explicitly constructed" set. Indeed, for instance, there are explicitly constructed sets of reals that are uncountable and of size continuum […]

The question seems to be: Assume that there is a Vitali set $V$. Is there an explicit bijection between $V$ and $\mathbb R$? The answer is yes, by an application of the Cantor-Schröder-Bernstein theorem: there is an explicit injection from $\mathbb R$ into $\mathbb R/\mathbb Q$ (provably in ZF, this requires some thought, or see the answers to this question) […]

If a set $X$ is well-founded (essentially, if it contains no infinite $\in$-descending chains), then indeed $\emptyset$ belongs to its transitive closure, that is, either $X=\emptyset$ or $\emptyset\in\bigcup X$ or $\emptyset\in\bigcup\bigcup X$ or... However, this does not mean that there is some $n$ such that the result of iterating the union operation $n$ […]