Instructor: Andres Caicedo. Contact Information: See here. Time: MWF 10:30-11:45 am. Place: Business, Room 204. Office Hours: Th 3-4:30 (starting Jan. 31), or by appointment (email me a few times/dates you have available).

Text: Calculus (Michael Spivak), fourth edn. Publish or Perish, Inc. Here are some reviews.

If you want an additional text to supplement your reading, I suggest Calculus. Whitman College (David Guichard and others). The text is distributed under a Creative Commons license. It can be downloaded from Whitman’s page. You may also want to consider as an amusing, quick reference, The cartoon guide to Calculus (Larry Gonick).

Contents: The department’s course description reads:

Definitions of limit, derivative and integral. Computation of the derivative, including logarithmic, exponential and trigonometric functions. Applications of the derivative, approximations, optimization, mean value theorem. Fundamental Theorem of Calculus, brief introduction to applications of the integral and to computations of antiderivatives.

We will see some applications, but our emphasis is on understanding the theory. The material to cover is roughly the first 18-and-a-bit chapters of Spivak’s book.

The grade will be decided based on homework, quizzes, and a final exam (20%). The date of the final is Monday, May 13, 12-2 pm. Details of homework and quiz policy will be given in due time.

I post links to supplementary material on Google+. Circle me and let me know if you are interested, and I’ll add you to my Calculus circle.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Wednesday, January 23rd, 2013 at 4:33 pm and is filed under 170: Calculus I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

Please send an email to mathrev@ams.org, explaining the issue. (This is our all-purpose email address; any mistakes you discover, not just regarding references, you can let us know there.) Give us some time, I promise we'll get to it. However, if it seems as if the request somehow fell through the cracks, you can always contact one of your friendly edit […]

The characterization mentioned by Mohammad in his answer really dates back to Lev Bukovský in the early 70s, and, as Ralf and Fabiana recognize in their note, has nothing to do with $L$ or with reals (in their note, they indicate that after proving their result, they realized they had essentially rediscovered Bukovský's theorem). See MR0332477 (48 #1080 […]

The paper MR1029909 (91b:03090). Mekler, Alan H.; Shelah, Saharon. The consistency strength of "every stationary set reflects". Israel J. Math. 67 (1989), no. 3, 353–366, that you mention in the question actually provides the relevant references and explains the key idea of the argument. Note first that $\kappa$ is assumed regular. They refer to MR […]

Start with Conway's base 13 function $c $ (whose range on any interval is all of $\mathbb R $), which is everywhere discontinuous, and note that if $f $ only takes values $0$ and $1$, then $c+f $ is again everywhere discontinuous (since its range on any interval is unbounded). Now note that there are $2^\mathfrak c $ such functions $f $: the characteris […]

Yes, there are such sets. To describe an example, let's start with simpler tasks. If we just want $P\ne\emptyset$ with $P^1=\emptyset$, take $P$ to be a singleton. If we want $P^1\ne\emptyset$ and $P^2=\emptyset$, take $P$ to be a strictly increasing sequence together with its limit $a$. Then $P^1=\{a\}$. If we want $P^2\ne\emptyset$ and $P^3=\emptyset$ […]

The result was proved by Kenneth J. Falconer. The reference is MR0629593 (82m:05031). Falconer, K. J. The realization of distances in measurable subsets covering $R^n$. J. Combin. Theory Ser. A 31 (1981), no. 2, 184–189. The argument is relatively simple, you need a decent understanding of the Lebesgue density theorem, and some basic properties of Lebesgue m […]

No, not even $\mathsf{DC}$ suffices for this. Here, $\mathsf{DC}$ is the axiom of dependent choice, which is strictly stronger than countable choice. For instance, it is a theorem of $\mathsf{ZF}$ that for any set $X$, the set $\mathcal{WO}(X)$ of subsets of $X$ that are well-orderable has size strictly larger than the size of $X$. This is a result of Tarski […]