Instructor: Andres Caicedo. Contact Information: See here. Time: MWF 10:30-11:45 am. Place: Business, Room 204. Office Hours: Th 3-4:30 (starting Jan. 31), or by appointment (email me a few times/dates you have available).

Text: Calculus (Michael Spivak), fourth edn. Publish or Perish, Inc. Here are some reviews.

If you want an additional text to supplement your reading, I suggest Calculus. Whitman College (David Guichard and others). The text is distributed under a Creative Commons license. It can be downloaded from Whitman’s page. You may also want to consider as an amusing, quick reference, The cartoon guide to Calculus (Larry Gonick).

Contents: The department’s course description reads:

Definitions of limit, derivative and integral. Computation of the derivative, including logarithmic, exponential and trigonometric functions. Applications of the derivative, approximations, optimization, mean value theorem. Fundamental Theorem of Calculus, brief introduction to applications of the integral and to computations of antiderivatives.

We will see some applications, but our emphasis is on understanding the theory. The material to cover is roughly the first 18-and-a-bit chapters of Spivak’s book.

The grade will be decided based on homework, quizzes, and a final exam (20%). The date of the final is Monday, May 13, 12-2 pm. Details of homework and quiz policy will be given in due time.

I post links to supplementary material on Google+. Circle me and let me know if you are interested, and I’ll add you to my Calculus circle.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Wednesday, January 23rd, 2013 at 4:33 pm and is filed under 170: Calculus I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

I learned of this problem through Su Gao, who heard of it years ago while a post-doc at Caltech. David Gale introduced this game in the 70s, I believe. I am only aware of two references in print: Richard K. Guy. Unsolved problems in combinatorial games. In Games of No Chance, (R. J. Nowakowski ed.) MSRI Publications 29, Cambridge University Press, 1996, pp. […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

The two concepts are different. For example, $\omega$, the first infinite ordinal, is the standard example of an inductive set according to the first definition, but is not inductive in the second sense. In fact, no set can be inductive in both senses (any such putative set would contain all ordinals). In the context of set theory, the usual use of the term […]

I will show that for any positive integers $n,\ell,k$ there is an $M$ so large that for all positive integers $i$, if $i/M\le \ell$, then the difference $$ \left(\frac iM\right)^n-\left(\frac{i-1}M\right)^n $$ is less than $1/k$. Let's prove this first, and then argue that the result follows from it. Note that $$ (i+1)^n-i^n=\sum_{k=0}^{n-1}\binom nk i^ […]

I think it is cleaner to argue without induction. If $n$ is a positive integer and $n\ge 8$, then $7n$ is both less than $n^2$ and a multiple of $n$, so at most $n^2-n$ and therefore $7n+1$ is at most $n^2-n+1

Let PRA be the theory of Primitive recursive arithmetic. This is a subtheory of PA, and it suffices to prove the incompleteness theorem. It is perhaps not the easiest theory to work with, but the point is that a proof of incompleteness can be carried out in a significantly weaker system than the theories to which incompleteness actually applies. It is someti […]

Here is a silly thing; I am not sure it is an "advantage" (or, for that matter, a disadvantage), but it indicates a difference: Inside a model $M$ of $\mathsf{ZF}$ there may be "hidden'' models $N$ of $\mathsf{ZF}$. The situation I have in mind is something like the following, which uses the fact that $\mathsf{ZF}$ is not finitely ax […]