This set is due Friday, March 8, at the beginning of lecture.

Solve problem 2 from Chapter 7. In each case, use the bisection method to approximate within a value of for which we have . Recall that in the bisection method, at each stage we have an interval and we know that and (or ). We let be the midpoint of the interval. If , we let and we are done. More likely, either , and we have , our new interval is , and we iterate the process, or , and we have , our new interval is , and we iterate the process.

Solve problem 3 from Chapter 7. As before, approximate within .

Find the first few convergents to , and use them to find within . Recall that the convergents of are obtained by the following process:

Define so that: is the largest integer below . Let , and let be the largest integer below . Let , and let be the largest integer below . Let , and let be the largest integer below , etc.

The first convergent to is the number . The second convergent is . The third convergent is . Etc.

The number is sandwiched between the convergents, in the sense that it is larger than the first, smaller than the second, larger than the third, smaller than the fourth, etc.

Approximate following the following algorithm: Let be an arbitrary number that you choose, presumably not too far from . Given , we define a new approximation by the formula Check with the help a calculator that these numbers approach very quickly. Use this to find the first digits of .

Extra credit problem: Why does the algorithm of the last problem work?

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, February 28th, 2013 at 2:37 pm and is filed under 170: Calculus I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

I am looking for references discussing two inequalities that come up in the study of the dynamics of Newton's method on real-valued polynomials (in one variable). The inequalities are fairly different, but it seems to make sense to ask about both of them in the same post. Most of the details below are fairly elementary, they are mostly included for comp […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Not necessarily. That $\mathfrak m$ is consistently singular is proved in MR0947850 (89m:03045) Kunen, Kenneth. Where $\mathsf{MA}$ first fails. J. Symbolic Logic 53(2), (1988), 429–433. There, Ken shows that $\mathfrak{m}$ can be singular of cofinality $\omega_1$. (Both links above are behind paywalls.)

No, the rank of a set $x$ is the least $\alpha$ such that $x\in V_{\alpha+1}$. Note that if $\alpha$ is limit, any $x\in V_\alpha$ belongs to some $V_\beta$ with $\beta

The real numbers are the usual thing. Surreal numbers are not real numbers, so no, they are not an example of non-constructible reals. Any real $r$ can be written as an infinite sequence $(n;d_1,d_2,\dots)$ where $n$ in an integer and the $d_i$ are digits. Whether the real is rational, constructible or not, is irrelevant. Any rational number, in fact, any al […]

Following Tomas's suggestion, I am posting this as an answer: I encountered this problem while directing a Master's thesis two years ago, and again (in a different setting) with another thesis last year. I seem to recall that I somehow got to this while reading slides of a talk by Paul Pollack. Anyway, I like to deduce the results asked in the prob […]

This is a beautiful and truly fundamental result, and so there are several good quality presentations. Try MR1321144. Kanamori, Akihiro. The higher infinite. Large cardinals in set theory from their beginnings. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1994. xxiv+536 pp. ISBN: 3-540-57071-3, or any of the newer editions (the 2003 second ed […]