As an extra credit project: Write (type) a short essay on the life and mathematical contributions of one of the mathematicians responsible for the development of calculus. Please email me your choice before you get started, to avoid repetitions. Make sure to cite all your references appropriately. Turn this in by FridayMonday, April 1.

This entry was posted on Monday, March 4th, 2013 at 10:51 am and is filed under 170: Calculus I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Consider a subset $\Omega$ of $\mathbb R$ of size $\aleph_1$ and ordered in type $\omega_1$. (This uses the axiom of choice.) Let $\mathcal F$ be the $\sigma$-algebra generated by the initial segments of $\Omega$ under the well-ordering (so all sets in $\mathcal F$ are countable or co-countable), with the measure that assigns $0$ to the countable sets and $1 […]

You assume $\omega_\alpha\subseteq M$ and $X\in M$ so that $X$ belongs to the transitive collapse of $M$ (because if $\pi$ is the collapsing map, $\pi(X)=\pi[X]=X$. You assume $|M|=\aleph_\alpha$ so that the transitive collapse of $M$ has size $\aleph_\alpha$. Since you also have that this transitive collapse is of the form $L_\beta$ for some $\beta$, it fol […]

Perhaps the following may clarify the comments: for any ordinal $\delta$, there is a Boolean-valued extension of the universe of sets where $2^{\aleph_0}>\aleph_\delta$ holds. If you rather talk of models than Boolean-valued extensions, what this says is that we can force while preserving all ordinals, and in fact all initial ordinals, and make the contin […]

I do not know of any active set theorists who think large cardinals are inconsistent. At least, within the realm of cardinals we have seriously studied. [Reinhardt suggested an ultimate axiom of the form "there is a non-trivial elementary embedding $j:V\to V$". Though some serious set theorists found it of possible interest immediately following it […]

There is a fantastic (and not too well-known) result of Shelah stating that $L({\mathcal P}(\lambda))$ is a model of choice whenever $\lambda$ is a singular strong limit of uncountable cofinality. This is a consequence of a more general theorem that can be found in 4.6/6.7 of "Set Theory without choice: not everything on cofinality is possible", Ar […]

Let $B=\{n\mid \forall m\in A\,(n>m)\}$. That is, $B$ is the collection of natural numbers that are larger than all elements of $A$. If $A$ is infinite, $B$ is empty. If $A$ is finite, $B$ is not only infinite, but in fact it is a tail of the natural numbers; more precisely, it is the set of all natural numbers strictly larger than the maximum of $A$.

The standard notation in logic would be $\exists^\infty$. The exclamation mark ! is used to indicate uniqueness, $\exists^{!n} x\,\phi(x)$ being "there are exactly $n$ distinct elements $x$ such that $\phi(x)$". So, the standard reading of $\exists^{!\infty}x\,\phi(x)$ would be "there are exactly infinitely many $x$ such that..." which is […]

Take $a_n=p$, where $p$ is the smallest prime dividing $n$. If a subsequence converges, it converges to a prime $p$, in which case except for finitely many initial terms, the sequence is eventually constant with value $p$. But the number of initial terms is arbitrary.

The precise consistency strength of the global failure of the generalized continuum hypothesis is somewhat technical to state. As far as I know, it has not been published, but I think we have a decent understanding of what the correct statement should be. The most relevant paper towards this result is MR2224051 (2007d:03082). Gitik, Moti Merimovich, Carmi. P […]

There are integrable functions that are not derivatives: Any function that is continuous except at a single point, where it has a jump discontinuity, is an example. (Derivatives have the intermediate value property.) More interestingly, we can ask whether the existence of an antiderivative ensures integrability. The answer depends on what integral you are co […]