(If someone has a version in higher resolution, or pictures of the conference, please contact John Steel, or myself.)

A very incomplete key, possibly with mistakes:

First row: ?, Diego Rojas-Rebolledo, ?, Leo Harrington, Ernest Schimmerling.

Second: Peter Koekpe; Alexandra, Hugh, and Christine Woodin; Xianghui Shi, me, John Clemens.

Third: John Steel, Alessandro Andretta, Tony Martin.

Fourth: Stevo Todorcevic, Paul Corazza, Philip Welch, Ilijah Farah, Qi Feng, ?, Martin Zeman, Robert Solovay, Richard Laver, Erik Closson (?), James Cummings.

Fifth: ?, Itay Neeman, Thomas Jech, Greg Hjorth, Joan Moschovakis (?), Yiannis Moschovakis, Matthew Foreman (?), Ted Slaman, Jindra Zapletal, Joan Bagaria.

Sixth: Benedikt Löwe, ?, Jean Larson, Bill Mitchell, ?, Carlos di Prisco, ?, Mike Oliver, ?, Lorenz Halbeisen, Derrick Duboise, Peter Koellner.

Seventh, etc: Herb Enderton, ?, ?, Joel Hamkins, Alain Louveau, Slawomir Solecki, ?, Mack Stanley, ?, ?, Tomek Bartoszynski, Paul Larson, Lisa Marks, Richard Ketchersid. ?

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, May 23rd, 2013 at 10:26 pm and is filed under Conferences, Life. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

[…] this picture a few days ago, when looking at the old photos from the Martin Conference. I posted here the group picture from that conference. John Steel should be posting the other pictures soon (well, […]

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

I assume by $\aleph$ you mean $\mathfrak c$, the cardinality of the continuum. You can build $D$ by transfinite recursion: Well-order the continuum in type $\mathfrak c$. At stage $\alpha$ you add a point of $A_\alpha$ to your set, and one to its complement. You can always do this because at each stage fewer than $\mathfrak c$ many points have been selected. […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is negative. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${\mathfrak c}$ (This doesn't matter, all we need is that it is strictly larger. T […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\}$, and $\mathsf{ZFC}$ proves that $\phi$ and $\psi$ […]

Yes, the suggested rearrangement converges to 0. This is a particular case of a result of Martin Ohm: For $p$ and $q$ positive integers rearrange the sequence $$\left(\frac{(−1)^{n-1}} n\right)_{n\ge 1} $$ by taking the ﬁrst $p$ positive terms, then the ﬁrst $q$ negative terms, then the next $p$ positive terms, then the next $q$ negative terms, and so on. Th […]

Yes, by the incompleteness theorem. An easy argument is to enumerate the sentences in the language of arithmetic. Assign to each node $\sigma $ of the tree $2^{

I’ll try to post a key over the next few days. [

Edit:Added, though terribly incomplete.][…] this picture a few days ago, when looking at the old photos from the Martin Conference. I posted here the group picture from that conference. John Steel should be posting the other pictures soon (well, […]