I ran into this picture a few days ago, when looking at the old photos from the Martin Conference. I posted here the group picture from that conference. John Steel should be posting the other pictures soon (well, I’ve been waiting since 2001, so we’ll see), or I may post them if that ends up not happening.

This one is the conference photo from the Logic Colloquium 2000. The website has many other pictures available as well. It was an interesting meeting.

Paris, July 23 – 31, 2000. The meeting site will be the Sorbonne, where David Hilbert presented his famous list of problems at the International Congress of Mathematicians in August 1900.

As I recall, at the opening we listened to a recording of part of Hilbert’s address, including his Wir müssen wissen. Wir werden wissen.

I like this picture very much. You can see me behind Joel Hamkins, in what seems to be row eight. (I believe I met Joel and his wife, Barbara Gail Montero, at this conference.) Paul Larson still has hair.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Wednesday, May 29th, 2013 at 10:40 pm and is filed under Conferences. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Perhaps the following may clarify the comments: for any ordinal $\delta$, there is a Boolean-valued extension of the universe of sets where $2^{\aleph_0}>\aleph_\delta$ holds. If you rather talk of models than Boolean-valued extensions, what this says is that we can force while preserving all ordinals, and in fact all initial ordinals, and make the contin […]

I do not know of any active set theorists who think large cardinals are inconsistent. At least, within the realm of cardinals we have seriously studied. [Reinhardt suggested an ultimate axiom of the form "there is a non-trivial elementary embedding $j:V\to V$". Though some serious set theorists found it of possible interest immediately following it […]

There is a fantastic (and not too well-known) result of Shelah stating that $L({\mathcal P}(\lambda))$ is a model of choice whenever $\lambda$ is a singular strong limit of uncountable cofinality. This is a consequence of a more general theorem that can be found in 4.6/6.7 of "Set Theory without choice: not everything on cofinality is possible", Ar […]

In set theory, definitely the notion of a Woodin cardinal. First, it is not an entirely straightforward notion to guess. Significant large cardinals were up to that point defined as critical points of certain elementary embeddings. This is not the case here: Woodin cardinals need not be measurable. If $\kappa$ is Woodin, then $V_\kappa$ is a model of set the […]

The first example that came to mind was MR0270881 (42 #5764) van der Waerden, B. L. How the proof of Baudet's conjecture was found. 1971 Studies in Pure Mathematics (Presented to Richard Rado) pp. 251–260 Academic Press, London. There, van der Waerden describes some of the history as well as his proof of his well-known theorem. Another example: MR224589 […]

The principle $\lozenge$ (diamond) is in a sense the right set-theoretic version of the continuum hypothesis, as it presents it instead as a reflection principle. Formally, it asserts that there is a diamond sequence, that is, a sequence $(A_\alpha:\alpha

Unfortunately, Maddy is being imprecise in her use of terminology and the surrounding explanation. The mention of Borel in page 496 is a good hint that the notion she is discussing is that of being strong measure zero, as suggested in the comments. A set of reals is (or has) measure zero if and only if for any $\epsilon>0$ it can be covered by countably m […]

Note that $\alpha\mapsto\|c_\alpha^\lambda\|_S$ is strictly increasing (trivially): After all, $$\{\delta\in S\mid c_\beta^\lambda(\delta)\ge c_\alpha^\lambda(\delta)\}=\{\delta\in S\mid\beta\ge \alpha\}=\emptyset$$ if $\beta

The property is defined relative to the set $S$, not to any potential superset of $S$. The example you give has $S=(a,b)$ and the subset you chose as $E$, namely $((a+b)/2,b)$ is not bounded above in $S$ (it is bounded above in $\mathbb R$, but this doesn't matter). In fact, you can easily check that $S=(a,b)$ has the least upper bound property, the poi […]

The claim is not true. An easy counterexample is obtained by letting $f$ be identically 0 and $g$ be the characteristic function of the rationals. We have $f=g$ a.e., $f$ is everywhere continuous and $g$ is nowhere continuous. (Clearly, the restriction of $g$ to the irrationals is continuous (being constant), but this is not enough to ensure that $g$ is cont […]

Paul, via email: “By the way, I still have hair. Just not everywhere.”