So, we went to Kathryn Albertson Park, to play football. But it was so hot, and there were so many geese mementos on the grass, that Francisco felt unhappy, and wanted to go home instead.

We are walking back to the car, when

“Wait. Is that a Dalek?” Francisco was ahead of me. He stopped, came back, and looked at where the camera and I were pointing.

“Yes. That’s a Dalek. And that’s the Doctor.”

The part that I wasn’t expecting was what happened next. He looked at Najuma and I, scared, and said:

“I want to get in the car. Let’s go home.” He started to go for the car, then he looked at me. Why are you not running, you fool?

“No, wait, let me take another picture.”

“No, no, let’s go. Let’s go…” There is a Dalek in the park coming for us, you people, what are you doing? Run! RUN!!

“Oh, it’s talking, what is it saying?”

What else, really? EX-TER-…

So, yeah. We got in the car and sped out of there and into safety.

“Is the Dalek following us, papi?”

“No, I don’t think it is.”

“Are we safe at home?”

“Sure we are. And anyway, let me tell you, I’ll protect you of any Dalek attacks we may suffer, ok?”

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Saturday, June 1st, 2013 at 1:42 pm and is filed under Life. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Perhaps the following may clarify the comments: for any ordinal $\delta$, there is a Boolean-valued extension of the universe of sets where $2^{\aleph_0}>\aleph_\delta$ holds. If you rather talk of models than Boolean-valued extensions, what this says is that we can force while preserving all ordinals, and in fact all initial ordinals, and make the contin […]

I do not know of any active set theorists who think large cardinals are inconsistent. At least, within the realm of cardinals we have seriously studied. [Reinhardt suggested an ultimate axiom of the form "there is a non-trivial elementary embedding $j:V\to V$". Though some serious set theorists found it of possible interest immediately following it […]

There is a fantastic (and not too well-known) result of Shelah stating that $L({\mathcal P}(\lambda))$ is a model of choice whenever $\lambda$ is a singular strong limit of uncountable cofinality. This is a consequence of a more general theorem that can be found in 4.6/6.7 of "Set Theory without choice: not everything on cofinality is possible", Ar […]

In set theory, definitely the notion of a Woodin cardinal. First, it is not an entirely straightforward notion to guess. Significant large cardinals were up to that point defined as critical points of certain elementary embeddings. This is not the case here: Woodin cardinals need not be measurable. If $\kappa$ is Woodin, then $V_\kappa$ is a model of set the […]

The first example that came to mind was MR0270881 (42 #5764) van der Waerden, B. L. How the proof of Baudet's conjecture was found. 1971 Studies in Pure Mathematics (Presented to Richard Rado) pp. 251–260 Academic Press, London. There, van der Waerden describes some of the history as well as his proof of his well-known theorem. Another example: MR224589 […]

Yes, it is consistent to have such cardinals. In fact, it is consistent relative to an inaccessible cardinal that $\omega\to(\omega)^\omega_2$. This is a famous result of Mathias, in MR0491197 (58 #10462). Mathias, A. R. D. Happy families. Ann. Math. Logic 12 (1977), no. 1, 59–111. (It is still open whether the inaccessible cardinal is required.) The result […]

The inductive definition of forcing (by complexity of formulas) gives in particular that $p$ forces $\lnot\psi$ if and only if no extension of $p$ forces $\psi$. That is exactly what is being claimed. As for why this general fact about forcing of negations holds, it is either immediate from the fact that a statement holds in a generic extension if and only i […]

The principle $\lozenge$ (diamond) is in a sense the right set-theoretic version of the continuum hypothesis, as it presents it instead as a reflection principle. Formally, it asserts that there is a diamond sequence, that is, a sequence $(A_\alpha:\alpha

Unfortunately, Maddy is being imprecise in her use of terminology and the surrounding explanation. The mention of Borel in page 496 is a good hint that the notion she is discussing is that of being strong measure zero, as suggested in the comments. A set of reals is (or has) measure zero if and only if for any $\epsilon>0$ it can be covered by countably m […]

Note that $\alpha\mapsto\|c_\alpha^\lambda\|_S$ is strictly increasing (trivially): After all, $$\{\delta\in S\mid c_\beta^\lambda(\delta)\ge c_\alpha^\lambda(\delta)\}=\{\delta\in S\mid\beta\ge \alpha\}=\emptyset$$ if $\beta

I PLEDGED NOT TO EXTERMINATE TODAY!

Oh, how fantastic! And through Dalek Klaus’s twitter account, I found https://www.facebook.com/media/set/?set=a.10151472718672638.1073741852.95835192637&type=3&l=6282565f58 (148 pictures of the adventure).

[…] last year. See also here and […]

[…] Maybe they are chasing me, see here. […]