Contents: Math 414/514 is an introduction to Analysis on Euclidean spaces (). The emphasis is theoretical, as opposed to the more computational approach of calculus. From the Course Description on the Department’s site:

Introduction to fundamental elements of analysis on Euclidean spaces including the basic differential and integral calculus. Topics include: infinite series, sequences and series of function, uniform convergences, theory of integration, implicit function theorem and applications.

Grading: Based on homework. No late homework is allowed. Collaboration is encouraged, although you must turn in your own version of the solutions, and give credit to books/websites/… you consulted and people you talked/emailed/… to.

I do not want to have exams in this course. However, an important component of being proficient in mathematics is a certain amount of mental agility in recalling notions and basic arguments. I plan to assess these by requesting oral presentations of solutions to some of the homework problems throughout the term. If I find you lacking here, it will be necessary to have an exam or two. The final exam is currently scheduled for Wednesday, December 18, 2013, 12:00 – 2:00 pm.

I will use this website to post additional information, and encourage you to use the comments feature. If you leave a comment, please use your full name, which will simplify my life filtering spam out.

On occasion, I post links to supplementary material on Google+. Circle me and let me know if you are interested, and I’ll add you to my Analysis circle. As with this blog, I encourage you to comment there.

This entry was posted on Sunday, August 25th, 2013 at 11:26 pm and is filed under 414/514: Analysis I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

One Response to 414/514 – Advanced calculus aka Analysis I – Syllabus

[…] for all closed measure zero sets , then is strong measure zero. (Since this was intended for my analysis course, and I do not see how to prove Pawlikowski’s argument without some appeal to results in […]

A database of number fields, by Jürgen Klüners and Gunter Malle. (Note this is not the same as the one mentioned in this answer.) The site also provides links to similar databases.

As the other answer indicates, the yes answer to your question is known as the De Bruijn-Erdős theorem. This holds regardless of the size of the graph. The De Bruijn–Erdős theorem is a particular instance of what in combinatorics we call a compactness argument or Rado's selection principle, and its truth can be seen as a consequence of the topological c […]

Every $P_c$ has the size of the reals. For instance, suppose $\sum_n a_n=c$ and start by writing $\mathbb N=A\cup B$ where $\sum_{n\in A}a_n$ converges absolutely (to $a$, say). This is possible because $a_n\to 0$: Let $m_0

Consider a subset $\Omega$ of $\mathbb R$ of size $\aleph_1$ and ordered in type $\omega_1$. (This uses the axiom of choice.) Let $\mathcal F$ be the $\sigma$-algebra generated by the initial segments of $\Omega$ under the well-ordering (so all sets in $\mathcal F$ are countable or co-countable), with the measure that assigns $0$ to the countable sets and $1 […]

You assume $\omega_\alpha\subseteq M$ and $X\in M$ so that $X$ belongs to the transitive collapse of $M$ (because if $\pi$ is the collapsing map, $\pi(X)=\pi[X]=X$. You assume $|M|=\aleph_\alpha$ so that the transitive collapse of $M$ has size $\aleph_\alpha$. Since you also have that this transitive collapse is of the form $L_\beta$ for some $\beta$, it fol […]

No, this is not possible. Dave L. Renfro wrote an excellent historical Essay on nowhere analytic $C^\infty$ functions in two parts (with numerous references). See here: 1 (dated May 9, 2002 6:18 PM), and 2 (dated May 19, 2002 8:29 PM). As indicated in part 1, in Zygmunt Zahorski. Sur l'ensemble des points singuliers d'une fonction d'une variab […]

I don't think you need too much in terms of prerequisites. An excellent reference is MR3616119. Tomkowicz, Grzegorz(PL-CEG2); Wagon, Stan(1-MACA-NDM). The Banach-Tarski paradox. Second edition. With a foreword by Jan Mycielski. Encyclopedia of Mathematics and its Applications, 163. Cambridge University Press, New York, 2016. xviii+348 pp. ISBN: 978-1-10 […]

For the second problem, write $x=-3+x'$ and so on. You have $x'+y'+z'=17$ and $x',\dots$ are nonnegative, a case you know how to solve. You can also solve the first problem this way; now you would set $x=1+x'$, etc.

[…] for all closed measure zero sets , then is strong measure zero. (Since this was intended for my analysis course, and I do not see how to prove Pawlikowski’s argument without some appeal to results in […]