Let’s prove that if , then either is an integer, or else it is irrational. (Cf. Abbott, Understanding analysis, Exercise 1.2.1.) There are many proofs of this fact. I present three.

1.

The standard proof of this fact uses the prime factorization of : There is a unique way of writing as , where the are distinct primes numbers, and the are positive integers (the number corresponds to the empty product, but since is a square, we may as well assume in what follows that ).

We show that if is rational, then in fact each is even, so is actually an integer. Write where are integers that we may assume relatively prime. This gives us that .

Consider any of the primes in the factorization of . Let and be the largest powers of that divide and , respectively, say and where does not divide either of and . Similarly, write , where does not divide ( is what we called above). We have

The point is that since is prime, it does not divide or : If is a prime and divides a product (where are integers), then divides or it divides .

This means that either is even (as we wanted to show), so that , or else (upon dividing both sides of the displayed equation by the smaller of and ), divides one of the two sides of the resulting equation, but not the other, a contradiction.

2.

The above is the standard proof, but there are other arguments that do not rely on prime factorizations. One I particularly like uses Bézout theorem: If is the greatest common divisor of the positive integers and , then there are integers such that .

Suppose . We may assume that are relatively prime, and therefore there are integers such that . The key observation is that . This, coupled with elementary algebra, verifies that

but the latter is an integer, and we are done.

3.

Another nice way of arguing, again by contradiction, is as follows: Suppose that is not an integer, but it is rational. There is a unique integer with , so . Let be the least positive integer such that is an integer, call it . Note that , which gives us a contradiction if is again an integer. But this can be verified by a direct computation:

.

4.

As a closing remark, the three arguments above generalize to show that is either an integer or irrational, for all positive integers . Similarly, if is rational for some positive integers , then both are th powers. (It is a useful exercise to see precisely how these generalizations go.)

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

It is easy to see without choice that if there is a surjection from $A$ onto $B$, then there is an injection from ${\mathcal P}(B)$ into ${\mathcal P}(A)$, and the result follows from Cantor's theorem that $B

Only noticed this question today. Although the selected answer is quite nice and arguably simpler than the argument below, none of the posted answers address what appeared to be the original intent of establishing the inequality using the Arithmetic Mean-Geometric Mean Inequality. For this, simply notice that $$ 1+3+\ldots+(2n-1)=n^2, $$ which can be easily […]

First of all, $f(z)+e^z\ne 0$ by the first inequality. It follows that $e^z/(f(z)+e^z)$ is entire, and bounded above. You should be able to conclude from that.

Yes. The standard way of defining these sequences goes by assigning in an explicit fashion to each limit ordinal $\alpha$, for as long as possible, an increasing sequence $\alpha_n$ that converges to $\alpha$. Once this is done, we can define $f_\alpha$ by diagonalizing, so $f_\alpha(n)=f_{\alpha_n}(n)$ for all $n$. Of course there are many possible choices […]

I disagree with the advice of sending a paper to a journal before searching the relevant literature. It is almost guaranteed that a paper on the fundamental theorem of algebra (a very classical and well-studied topic) will be rejected if you do not include mention on previous proofs, and comparisons, explaining how your proof differs from them, etc. It is no […]

[…] Solution to 1.2.1. […]