Let’s prove that if , then either is an integer, or else it is irrational. (Cf. Abbott, Understanding analysis, Exercise 1.2.1.) There are many proofs of this fact. I present three.

1.

The standard proof of this fact uses the prime factorization of : There is a unique way of writing as , where the are distinct primes numbers, and the are positive integers (the number corresponds to the empty product, but since is a square, we may as well assume in what follows that ).

We show that if is rational, then in fact each is even, so is actually an integer. Write where are integers that we may assume relatively prime. This gives us that .

Consider any of the primes in the factorization of . Let and be the largest powers of that divide and , respectively, say and where does not divide either of and . Similarly, write , where does not divide ( is what we called above). We have

The point is that since is prime, it does not divide or : If is a prime and divides a product (where are integers), then divides or it divides .

This means that either is even (as we wanted to show), so that , or else (upon dividing both sides of the displayed equation by the smaller of and ), divides one of the two sides of the resulting equation, but not the other, a contradiction.

2.

The above is the standard proof, but there are other arguments that do not rely on prime factorizations. One I particularly like uses Bézout theorem: If is the greatest common divisor of the positive integers and , then there are integers such that .

Suppose . We may assume that are relatively prime, and therefore there are integers such that . The key observation is that . This, coupled with elementary algebra, verifies that

but the latter is an integer, and we are done.

3.

Another nice way of arguing, again by contradiction, is as follows: Suppose that is not an integer, but it is rational. There is a unique integer with , so . Let be the least positive integer such that is an integer, call it . Note that , which gives us a contradiction if is again an integer. But this can be verified by a direct computation:

.

4.

As a closing remark, the three arguments above generalize to show that is either an integer or irrational, for all positive integers . Similarly, if is rational for some positive integers , then both are th powers. (It is a useful exercise to see precisely how these generalizations go.)

Every $P_c$ has the size of the reals. For instance, suppose $\sum_n a_n=c$ and start by writing $\mathbb N=A\cup B$ where $\sum_{n\in A}a_n$ converges absolutely (to $a$, say). This is possible because $a_n\to 0$: Let $m_0

Consider a subset $\Omega$ of $\mathbb R$ of size $\aleph_1$ and ordered in type $\omega_1$. (This uses the axiom of choice.) Let $\mathcal F$ be the $\sigma$-algebra generated by the initial segments of $\Omega$ under the well-ordering (so all sets in $\mathcal F$ are countable or co-countable), with the measure that assigns $0$ to the countable sets and $1 […]

You assume $\omega_\alpha\subseteq M$ and $X\in M$ so that $X$ belongs to the transitive collapse of $M$ (because if $\pi$ is the collapsing map, $\pi(X)=\pi[X]=X$. You assume $|M|=\aleph_\alpha$ so that the transitive collapse of $M$ has size $\aleph_\alpha$. Since you also have that this transitive collapse is of the form $L_\beta$ for some $\beta$, it fol […]

Perhaps the following may clarify the comments: for any ordinal $\delta$, there is a Boolean-valued extension of the universe of sets where $2^{\aleph_0}>\aleph_\delta$ holds. If you rather talk of models than Boolean-valued extensions, what this says is that we can force while preserving all ordinals, and in fact all initial ordinals, and make the contin […]

I do not know of any active set theorists who think large cardinals are inconsistent. At least, within the realm of cardinals we have seriously studied. [Reinhardt suggested an ultimate axiom of the form "there is a non-trivial elementary embedding $j:V\to V$". Though some serious set theorists found it of possible interest immediately following it […]

The number of such partitions is $2^{\mathfrak c}$. First, each partition $\pi$ is a collection of disjoint subsets of $\mathbb R$, so it has size at most $\mathfrak c$, and so there are at most $|[\mathcal P(\mathbb R)]^{\le\mathfrak c}|=2^{\mathfrak c}$ partitions, where $[A]^{\le\kappa}$ denotes the collection of subsets of $A$ of size at most $\kappa$. S […]

I don't think I know of any "natural" result showing that some specific set can only be proved infinite via a contradiction. However: There are several results involving fast-growing functions that perhaps are of this kind. Typically, one describes a certain recursive procedure that, when iterated starting from a positive integer, seems to pro […]

There are many reasonable axioms that have been studied in diverse situations and all are known to contradict instances of GCH. By far the strongest case can be made for strong forcing axioms such us Martin's maximum MM, or some of their significant consequences or close relatives (strong reflection principles). These forcing axioms imply that the conti […]

Given any field automorphism of $\mathbb C$, the rational numbers are fixed. In fact, any number that is explicitly definable in $\mathbb C$ (in the first order language of fields) is fixed. (Actually, this means that we can only ensure that the rationals are fixed, I expand on this below.) Any construction of a wild automorphism uses the axiom of choice. Se […]

This is a great question. I do not know of a full answer that does not simply say that the Cohen algebra completely embeds in the Boolean completion of $\mathbb P$. There are some nice positive results, though. One that comes up frequently in practice is that any finite support iteration of nontrivial posets adds a Cohen real. This is a serious source of dif […]

[…] Solution to 1.2.1. […]