This set is due Thursday, May 8, at the beginning of lecture. (There will be another homework set, due the scheduled day of the final exam, Thursday May 15, at 11am, so I recommend you try to complete this set earlier than the scheduled deadline.)

You can work on your own, or in groups of up to three members. In case you cannot find anybody to work with, and do not know how to program, let me know as soon as possible, and we will find an alternative. As usual, you can still collaborate with others not in your group, but please make sure to give appropriate credit and indicate clearly who you worked with, what references you consulted, etc.

1. Give an example of a matrix for which the power method fails. (Include a proof that this is indeed the case.)

2. Write a program that, given a square matrix (diagonalizable and) with real entries, computes approximations to its eigenvalues using the -algorithm. Ideally, the user can decide the dimensions of the matrix and, more importantly, the (tolerance) error within which the approximations will be found. Apply your method to a symmetric matrix, and check the number of iterations the process requires, as a function of the tolerance error.

Please turn in: The code (best if you email it to me), a write up explaining what your code does, the matrix you applied the method to, and the result. To help verify that your algorithm is proceeding correctly, at each step of the iteration have your program indicate clearly what the matrices and are, and what the new (output) matrix is.

Please make the algorithm as explicit as possible. Meaning: Do not use shortcuts already built into the software; most CASs already have functions that perform the Gram-Schmidt process to a given set of vectors, or functions that give the decomposition of a matrix. Instead, I want you to program these subroutines as well.

The programming language you use is up to you. Maple, Mathlab, Sage are standard choices, but if you prefer a different language, it should be fine. Let me know, just in case.

3. Do the same, but now for Francis’s algorithm. Apply it to the same matrix. (Here there are more matrices and some vectors the algorithm may want to display along the way. For instance, whenever a matrix is put into upper Heissenberg form, indicate what the reflectors used along the way are.)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Wednesday, April 16th, 2014 at 9:21 pm and is filed under 403/503: Linear Algebra II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

One Response to 403 – HW 3 – Computing eigenvalues

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

I assume by $\aleph$ you mean $\mathfrak c$, the cardinality of the continuum. You can build $D$ by transfinite recursion: Well-order the continuum in type $\mathfrak c$. At stage $\alpha$ you add a point of $A_\alpha$ to your set, and one to its complement. You can always do this because at each stage fewer than $\mathfrak c$ many points have been selected. […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is negative. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${\mathfrak c}$ (This doesn't matter, all we need is that it is strictly larger. T […]

Yes, the suggested rearrangement converges to 0. This is a particular case of a result of Martin Ohm: For $p$ and $q$ positive integers rearrange the sequence $$\left(\frac{(−1)^{n-1}} n\right)_{n\ge 1} $$ by taking the ﬁrst $p$ positive terms, then the ﬁrst $q$ negative terms, then the next $p$ positive terms, then the next $q$ negative terms, and so on. Th […]

Yes, by the incompleteness theorem. An easy argument is to enumerate the sentences in the language of arithmetic. Assign to each node $\sigma $ of the tree $2^{

A simple example is the permutation $\pi$ given by $\pi(n)=n+2$ if $n$ is even, $\pi(1)=0$, and otherwise $\pi(n)=n−2$. It should be clear that $\pi$ is computable and has the desired property. By the way, regarding the footnote: if a bijection is computable, so is its inverse, so $\pi^{-1}$ is computable as well. In general, given a computable bijection $\s […]

The question is asking to find all polynomials $f$ for which you can find $a,b\in\mathbb R$ with $a\ne b$ such that the displayed identity holds. The concrete numbers $a,b$ may very well depend on $f$. A priori, it may be that for some $f$ there is only one pair for which the identity holds, it may be that for some $f$ there are many such pairs, and it may a […]

The reflection principle is a theorem schema in ZFC, meaning that for each formula $\phi(\vec x)$ we can prove in ZFC a version of the principle for $\phi$. In particular, it gives us that if $\phi$ holds (in the universe of sets) then there is some ordinal $\alpha$ such that $V_\alpha\models \phi$. It follows from this that (assuming its consistency) $\math […]

[…] 15. Reflectors. Francis’s algorithm (conclusion). Homework 3, due May […]