414/514 Simple examples of Baire class one functions

Recall that a real-valued function defined on an interval is (in) Baire class one () iff it is the pointwise limit of continuous functions.

Examples are continuous functions, of course, but functions in do not need to be continuous. An easy example is the function given by if and if . This is the pointwise limit of the functions . By the way, an easy modification of this example shows that any function that is zero except at finitely many points is in .

Step functions are another source of examples. Suppose that and that is constant on each . Then is the pointwise limit of the functions , defined as follows: Fix a decreasing sequence converging to , with and for all . Now define as the restriction of to

,

and let extend by joining consecutive endpoints of the components of its domain with straight segments.

An important source of additional examples is the class of derivatives. Suppose and for all . This is the pointwise limit of the functions given by

This simple construction does not quite work if is defined on a bounded interval (as may fall outside the interval for some values of ). We can modify this easily by using straight segments as in the case of step functions: Say . For large enough so , define as above for , and now set and extend linearly in the interval .

Additional examples can be obtained by observing, first, that is a real vector space, and second, that it is closed under uniform limits (the latter is not quite obvious). This gives us, for instance, that all monotone functions are in , since monotone functions are the uniform limit of step functions on bounded intervals: Given an increasing , let . It follows that all functions of bounded variation are in , since any such function is the difference of two increasing functions.

Another interesting source of examples is characteristic functions. Given , the function is in iff is both an and a set.

On the other hand, is not in , since it is discontinuous everywhere while Baire class one functions are continuous on a comeager set.

This entry was posted on Monday, October 6th, 2014 at 10:19 am and is filed under 414/514: Analysis I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

6 Responses to 414/514 Simple examples of Baire class one functions

Sorry I am a bit confused .. Is this saying that we are setting f_n(b) = f(b) = g'(b)? So by taking it as the derivative, it approaches b but never passes it, or touches it?

[…] Previously, we listed some examples of Baire class one functions. Here we do the same for functions in the next class of Baire. Recall that if is an interval, the function is (in) Baire class two () iff it is the pointwise limit of a sequence of Baire one functions. […]

[…] derivatives are Darboux continuous (that is, they satisfy the intermediate value property), and are Baire one functions (that is, they are the pointwise limit of a sequence of continuous functions). But this […]

A database of number fields, by Jürgen Klüners and Gunter Malle. (Note this is not the same as the one mentioned in this answer.) The site also provides links to similar databases.

As the other answer indicates, the yes answer to your question is known as the De Bruijn-Erdős theorem. This holds regardless of the size of the graph. The De Bruijn–Erdős theorem is a particular instance of what in combinatorics we call a compactness argument or Rado's selection principle, and its truth can be seen as a consequence of the topological c […]

Every $P_c$ has the size of the reals. For instance, suppose $\sum_n a_n=c$ and start by writing $\mathbb N=A\cup B$ where $\sum_{n\in A}a_n$ converges absolutely (to $a$, say). This is possible because $a_n\to 0$: Let $m_0

Consider a subset $\Omega$ of $\mathbb R$ of size $\aleph_1$ and ordered in type $\omega_1$. (This uses the axiom of choice.) Let $\mathcal F$ be the $\sigma$-algebra generated by the initial segments of $\Omega$ under the well-ordering (so all sets in $\mathcal F$ are countable or co-countable), with the measure that assigns $0$ to the countable sets and $1 […]

You assume $\omega_\alpha\subseteq M$ and $X\in M$ so that $X$ belongs to the transitive collapse of $M$ (because if $\pi$ is the collapsing map, $\pi(X)=\pi[X]=X$. You assume $|M|=\aleph_\alpha$ so that the transitive collapse of $M$ has size $\aleph_\alpha$. Since you also have that this transitive collapse is of the form $L_\beta$ for some $\beta$, it fol […]

No, this is not possible. Dave L. Renfro wrote an excellent historical Essay on nowhere analytic $C^\infty$ functions in two parts (with numerous references). See here: 1 (dated May 9, 2002 6:18 PM), and 2 (dated May 19, 2002 8:29 PM). As indicated in part 1, in Zygmunt Zahorski. Sur l'ensemble des points singuliers d'une fonction d'une variab […]

I don't think you need too much in terms of prerequisites. An excellent reference is MR3616119. Tomkowicz, Grzegorz(PL-CEG2); Wagon, Stan(1-MACA-NDM). The Banach-Tarski paradox. Second edition. With a foreword by Jan Mycielski. Encyclopedia of Mathematics and its Applications, 163. Cambridge University Press, New York, 2016. xviii+348 pp. ISBN: 978-1-10 […]

For the second problem, write $x=-3+x'$ and so on. You have $x'+y'+z'=17$ and $x',\dots$ are nonnegative, a case you know how to solve. You can also solve the first problem this way; now you would set $x=1+x'$, etc.

Thanks to Stuart Nygard for suggesting the much easier argument for derivatives being than the messier approach I suggested in lecture.

(Proofs of the closure of under uniform limits, of the continuity fact, and of the claim about characteristic functions, will be provided in lecture.)

Sorry I am a bit confused .. Is this saying that we are setting f_n(b) = f(b) = g'(b)? So by taking it as the derivative, it approaches b but never passes it, or touches it?

Hi Monica.

By construction, each is continuous.

For any , if is large enough then . If , letting , we see that for all sufficiently large, , and this expression converges to .

So the only issue with this definition is whether we also have , but we arrange that this happens trivially, by setting for all .

Putting all this together, we see that pointwise.

oh okay thanks Andres!

[…] Previously, we listed some examples of Baire class one functions. Here we do the same for functions in the next class of Baire. Recall that if is an interval, the function is (in) Baire class two () iff it is the pointwise limit of a sequence of Baire one functions. […]

[…] derivatives are Darboux continuous (that is, they satisfy the intermediate value property), and are Baire one functions (that is, they are the pointwise limit of a sequence of continuous functions). But this […]