414/514 References on continuous nowhere differentiable functions

Just as the last two times I have taught 414/514, I am assigning a final project on the topic of continuous nowhere differentiable functions (see here and here for the previous times).

The project requires that you choose an example of a continuous nowhere differentiable function, and to write a report describing the function, indicating who first introduced it, and presenting complete proofs of its continuity and nowhere differentiability. Additional information relevant for context is highly encouraged.

I am including links to two encyclopedic references on the subject. Feel free to follow the arguments there closely if needed, or to consult other sources, but make sure that what you turn in is your own version of the details of the argument, and that full details (rather than a sketch) are provided.

Please take this project very seriously (in particular, do not copy details from books or papers, I want to see your own version of the details as you work through the arguments). Feel free to ask for feedback as you work on it; in fact, asking for feedback is a good idea. Do not wait until the last minute.

The project should be typeset and is due Wednesday, December 17 (though I strongly encourage you to turn it in earlier).

Please contact me by email as soon as you have chosen the topic you are going to cover, and I’ll list it here, to avoid repetitions.

Stephanie Potter: Wen’s function.

Jeremy Siegert: Orlicz functions.

Stuart Nygard: Besicovitch’s function.

Monica Agana: Koch’s snowflake.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Sunday, October 19th, 2014 at 7:13 pm and is filed under 414/514: Analysis I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

Please send an email to mathrev@ams.org, explaining the issue. (This is our all-purpose email address; any mistakes you discover, not just regarding references, you can let us know there.) Give us some time, I promise we'll get to it. However, if it seems as if the request somehow fell through the cracks, you can always contact one of your friendly edit […]

The characterization mentioned by Mohammad in his answer really dates back to Lev Bukovský in the early 70s, and, as Ralf and Fabiana recognize in their note, has nothing to do with $L$ or with reals (in their note, they indicate that after proving their result, they realized they had essentially rediscovered Bukovský's theorem). See MR0332477 (48 #1080 […]

This is a nice problem, it turned out more interesting than I first thought. Suppose first that $E$ is a measure zero set, and let's show that there is such a sequence of intervals. Since $E$ is measure zero, for each $\epsilon>0$ there is a sequence $\mathcal I_\epsilon$ of open intervals, the sum of whose lengths adds up to less than $\epsilon$. Co […]

The paper MR1029909 (91b:03090). Mekler, Alan H.; Shelah, Saharon. The consistency strength of "every stationary set reflects". Israel J. Math. 67 (1989), no. 3, 353–366, that you mention in the question actually provides the relevant references and explains the key idea of the argument. Note first that $\kappa$ is assumed regular. They refer to MR […]

Start with Conway's base 13 function $c $ (whose range on any interval is all of $\mathbb R $), which is everywhere discontinuous, and note that if $f $ only takes values $0$ and $1$, then $c+f $ is again everywhere discontinuous (since its range on any interval is unbounded). Now note that there are $2^\mathfrak c $ such functions $f $: the characteris […]

Yes, there are such sets. To describe an example, let's start with simpler tasks. If we just want $P\ne\emptyset$ with $P^1=\emptyset$, take $P$ to be a singleton. If we want $P^1\ne\emptyset$ and $P^2=\emptyset$, take $P$ to be a strictly increasing sequence together with its limit $a$. Then $P^1=\{a\}$. If we want $P^2\ne\emptyset$ and $P^3=\emptyset$ […]

The result was proved by Kenneth J. Falconer. The reference is MR0629593 (82m:05031). Falconer, K. J. The realization of distances in measurable subsets covering $R^n$. J. Combin. Theory Ser. A 31 (1981), no. 2, 184–189. The argument is relatively simple, you need a decent understanding of the Lebesgue density theorem, and some basic properties of Lebesgue m […]