(This post is specifically for Math 287 students.)

Starting Monday, you guys should be organized in new groups. No group can have three members that are together in the current groups. When I arrive on Monday, the groups should already be formed. You guys should start working on the laboratory on Polyhedra, Chapter 7. Make sure to bring whatever materials may be needed for this.

There have been complaints about not everybody contributing their share to their respective groups. This is not acceptable, but it is sadly the main reason for the reorganization. So: If I receive two complaints about a member not contributing as required, and there are no reasonable extenuating circumstances, that person will be dropped out of their group (receiving a zero in their current project as a result). If the issue is not expected to be resolved for the next report, a new reorganization of groups will be triggered as a result.

Also, I am unhappy with the level of some of the reports. It seems the peer reviewing of other groups’ drafts is not being taken as seriously as needed. So: Now, on the dates drafts are due, each group should bring three copies of their current draft. When you review another group’s draft, write the members of your group on the copy you are reviewing. I’ll collect the copies, with your comments, copy them for my records and return. If I identify something that a group should have noticed and mentioned, but did not, that group will be penalized (since this means the group did not take their refereeing role seriously). Conversely, if a group mentions something that should be addressed, but I do not see the issue resolved in the final report, the group that failed to address the given comments will be penalized.

Finally, this being a mathematics course, I expect your projects to include proofs. If a project lacks proofs it will receive a failing grade.

Feel free to contact me be email if any of the above needs clarifying.

[…] de puissances, Fundamenta Mathematicae, 3, (1922), 52–58, or Fritz Herzog, George Piranian, Sets of convergence of Taylor series. I. Duke Math. J., 16, (1949), 529–534. Both papers prove more general results, by explicit […]

Throughout the question, we only consider primes of the form $3k+1$. A reference for cubic reciprocity is Ireland & Rosen's A Classical Introduction to Modern Number Theory. How can I count the relative density of those $p$ (of the form $3k+1$) such that the equation $2=3x^3$ has no solutions modulo $p$? Really, even pointers on how to say anything […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

I learned of this problem through Su Gao, who heard of it years ago while a post-doc at Caltech. David Gale introduced this game in the 70s, I believe. I am only aware of two references in print: Richard K. Guy. Unsolved problems in combinatorial games. In Games of No Chance, (R. J. Nowakowski ed.) MSRI Publications 29, Cambridge University Press, 1996, pp. […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

$L$ has such a nice canonical structure that one can use it to define a global well-ordering. That is, there is a formula $\phi(u,v)$ that (provably in $\mathsf{ZFC}$) well-orders all of $L$, so that its restriction to any specific set $A$ is a set well-ordering of $A$. The well-ordering $\varphi$ you are asking about can be obtained as the restriction to $\ […]

The two concepts are different. For example, $\omega$, the first infinite ordinal, is the standard example of an inductive set according to the first definition, but is not inductive in the second sense. In fact, no set can be inductive in both senses (any such putative set would contain all ordinals). In the context of set theory, the usual use of the term […]

I will show that for any positive integers $n,\ell,k$ there is an $M$ so large that for all positive integers $i$, if $i/M\le \ell$, then the difference $$ \left(\frac iM\right)^n-\left(\frac{i-1}M\right)^n $$ is less than $1/k$. Let's prove this first, and then argue that the result follows from it. Note that $$ (i+1)^n-i^n=\sum_{k=0}^{n-1}\binom nk i^ […]

I think it is cleaner to argue without induction. If $n$ is a positive integer and $n\ge 8$, then $7n$ is both less than $n^2$ and a multiple of $n$, so at most $n^2-n$ and therefore $7n+1$ is at most $n^2-n+1

[…] de puissances, Fundamenta Mathematicae, 3, (1922), 52–58, or Fritz Herzog, George Piranian, Sets of convergence of Taylor series. I. Duke Math. J., 16, (1949), 529–534. Both papers prove more general results, by explicit […]