(This post is specifically for Math 287 students.)

Starting Monday, you guys should be organized in new groups. No group can have three members that are together in the current groups. When I arrive on Monday, the groups should already be formed. You guys should start working on the laboratory on Polyhedra, Chapter 7. Make sure to bring whatever materials may be needed for this.

There have been complaints about not everybody contributing their share to their respective groups. This is not acceptable, but it is sadly the main reason for the reorganization. So: If I receive two complaints about a member not contributing as required, and there are no reasonable extenuating circumstances, that person will be dropped out of their group (receiving a zero in their current project as a result). If the issue is not expected to be resolved for the next report, a new reorganization of groups will be triggered as a result.

Also, I am unhappy with the level of some of the reports. It seems the peer reviewing of other groups’ drafts is not being taken as seriously as needed. So: Now, on the dates drafts are due, each group should bring three copies of their current draft. When you review another group’s draft, write the members of your group on the copy you are reviewing. I’ll collect the copies, with your comments, copy them for my records and return. If I identify something that a group should have noticed and mentioned, but did not, that group will be penalized (since this means the group did not take their refereeing role seriously). Conversely, if a group mentions something that should be addressed, but I do not see the issue resolved in the final report, the group that failed to address the given comments will be penalized.

Finally, this being a mathematics course, I expect your projects to include proofs. If a project lacks proofs it will receive a failing grade.

Feel free to contact me be email if any of the above needs clarifying.

[…] de puissances, Fundamenta Mathematicae, 3, (1922), 52–58, or Fritz Herzog, George Piranian, Sets of convergence of Taylor series. I. Duke Math. J., 16, (1949), 529–534. Both papers prove more general results, by explicit […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

The description below comes from József Beck. Combinatorial games. Tic-tac-toe theory, Encyclopedia of Mathematics and its Applications, 114. Cambridge University Press, Cambridge, 2008, MR2402857 (2009g:91038). Given a finite set $S$ of points in the plane $\mathbb R^2$, consider the following game between two players Maker and Breaker. The players alternat […]

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

It is easy to see without choice that if there is a surjection from $A$ onto $B$, then there is an injection from ${\mathcal P}(B)$ into ${\mathcal P}(A)$, and the result follows from Cantor's theorem that $B

Only noticed this question today. Although the selected answer is quite nice and arguably simpler than the argument below, none of the posted answers address what appeared to be the original intent of establishing the inequality using the Arithmetic Mean-Geometric Mean Inequality. For this, simply notice that $$ 1+3+\ldots+(2n-1)=n^2, $$ which can be easily […]

First of all, $f(z)+e^z\ne 0$ by the first inequality. It follows that $e^z/(f(z)+e^z)$ is entire, and bounded above. You should be able to conclude from that.

Yes. The standard way of defining these sequences goes by assigning in an explicit fashion to each limit ordinal $\alpha$, for as long as possible, an increasing sequence $\alpha_n$ that converges to $\alpha$. Once this is done, we can define $f_\alpha$ by diagonalizing, so $f_\alpha(n)=f_{\alpha_n}(n)$ for all $n$. Of course there are many possible choices […]

I disagree with the advice of sending a paper to a journal before searching the relevant literature. It is almost guaranteed that a paper on the fundamental theorem of algebra (a very classical and well-studied topic) will be rejected if you do not include mention on previous proofs, and comparisons, explaining how your proof differs from them, etc. It is no […]

[…] de puissances, Fundamenta Mathematicae, 3, (1922), 52–58, or Fritz Herzog, George Piranian, Sets of convergence of Taylor series. I. Duke Math. J., 16, (1949), 529–534. Both papers prove more general results, by explicit […]