(This post is specifically for Math 287 students.)

Starting Monday, you guys should be organized in new groups. No group can have three members that are together in the current groups. When I arrive on Monday, the groups should already be formed. You guys should start working on the laboratory on Polyhedra, Chapter 7. Make sure to bring whatever materials may be needed for this.

There have been complaints about not everybody contributing their share to their respective groups. This is not acceptable, but it is sadly the main reason for the reorganization. So: If I receive two complaints about a member not contributing as required, and there are no reasonable extenuating circumstances, that person will be dropped out of their group (receiving a zero in their current project as a result). If the issue is not expected to be resolved for the next report, a new reorganization of groups will be triggered as a result.

Also, I am unhappy with the level of some of the reports. It seems the peer reviewing of other groups’ drafts is not being taken as seriously as needed. So: Now, on the dates drafts are due, each group should bring three copies of their current draft. When you review another group’s draft, write the members of your group on the copy you are reviewing. I’ll collect the copies, with your comments, copy them for my records and return. If I identify something that a group should have noticed and mentioned, but did not, that group will be penalized (since this means the group did not take their refereeing role seriously). Conversely, if a group mentions something that should be addressed, but I do not see the issue resolved in the final report, the group that failed to address the given comments will be penalized.

Finally, this being a mathematics course, I expect your projects to include proofs. If a project lacks proofs it will receive a failing grade.

Feel free to contact me be email if any of the above needs clarifying.

[…] de puissances, Fundamenta Mathematicae, 3, (1922), 52–58, or Fritz Herzog, George Piranian, Sets of convergence of Taylor series. I. Duke Math. J., 16, (1949), 529–534. Both papers prove more general results, by explicit […]

(As I pointed out in a comment) yes, partial Woodinness is common in arguments in inner model theory. Accordingly, you obtain determinacy results addressing specific pointclasses (typically, well beyond projective). To illustrate this, let me "randomly" highlight two examples: See here for $\Sigma^1_2$-Woodin cardinals and, more generally, the noti […]

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

All proofs of the Bernstein-Cantor-Schroeder theorem that I know either directly or with very little work produce an explicit bijection from any given pair of injections. There is an obvious injection from $[0,1]$ to $C[0,1]$ mapping each $t$ to the function constantly equal to $t$, so the question reduces to finding an explicit injection from $C[0,1]$ to $[ […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]

"There are" examples of discontinuous homomorphisms between Banach algebras. However, the quotes are there because the question is independent of the usual axioms of set theory. I quote from the introduction to W. Hugh Woodin, "A discontinuous homomorphism from $C(X)$ without CH", J. London Math. Soc. (2) 48 (1993), no. 2, 299-315, MR1231 […]

This is Hausdorff's formula. Recall that $\tau^\lambda$ is the cardinality of the set ${}^\lambda\tau$ of functions $f\!:\lambda\to\tau$, and that $\kappa^+$ is regular for all $\kappa$. Now, there are two possibilities: If $\alpha\ge\tau$, then $2^\alpha\le\tau^\alpha\le(2^\alpha)^\alpha=2^\alpha$, so $\tau^\alpha=2^\alpha$. In particular, if $\alpha\g […]

Fix a model $M$ of a theory for which it makes sense to talk about $\omega$ ($M$ does not need to be a model of set theory, it could even be simply an ordered set with a minimum in which every element has an immediate successor and every element other than the minimum has an immediate predecessor; in this case we could identify $\omega^M$ with $M$ itself). W […]

[…] de puissances, Fundamenta Mathematicae, 3, (1922), 52–58, or Fritz Herzog, George Piranian, Sets of convergence of Taylor series. I. Duke Math. J., 16, (1949), 529–534. Both papers prove more general results, by explicit […]